Traces Exist (Hypothetically)!

Carl Pollard

Structure and Evidence in Linguistics
Workshop in Honor of Ivan Sag
Stanford University

April 28, 2013

Carl Pollard Traces Exist (Hypothetically)!

Traces in Transformational Grammar (1/2)

m Traces are usually thought to have been invented
(discovered?) by linguists at MIT in the early 1970’s:

WH-fronting could be formulated so that a phonetically null
copy of the WH-word is left behind in its pre-fronting
position. [Wasow 1972:139, attributed to Culicover (p.c.)]
[A]ssuming that wh-Movement leaves a trace PRO, we
might then stipulate that every rule that moves an item

from an obligatory category (in the sense of Emonds
(1970)) leaves a trace. [Chomsky 1973:135, fn. 49|

m Subsequently they became a mainstay of TG:

[D-structures] are mapped to S-structures by the rule
Move-a, leaving traces coindexed with their antecedents
[Chomsky 1981:5]

Carl Pollard Traces Exist (Hypothetically)!

Traces in Transformational Grammar (2/2)

But even in TG, the ontological status of traces has not been
completely straightforward:

[T]he correct LF for (32)

(32) Who did Mary say that John kissed t

should be

(37) for which z, x a person, Mary said that John kissed [z]

The LF (37) has a terminal symbol, x, in the position of
the NP source of who, but (32) has only a trace, i.e. only
the structure [xp, €], where 7 is the index of who.
[Chomsky 1977:83-84]

Carl Pollard Traces Exist (Hypothetically)!

Traces in Phrase Structure Grammar (1/2)

m In Gazdar 1981, if A and B are syntactic categories, then
so is A/B. Then the notion of trace is expressed as

AJA —t

which is a lexical entry schema for the null string.

m Pollard and Sag’s (1994:161) trace schema is the same as
Gazdar’s, recoded as an AVM:

[PHON (), [SYNSEM [LOC [1], NONLOC|SLASH [1])]

Carl Pollard Traces Exist (Hypothetically)!

Traces in Phrase Structure Grammar (2/2)

m But Pollard and Sag (1994:378-387) eliminated traces in
favor of three lexical rules responsible, respectively, for
extraction of complements, subjects, and adjuncts.

m Sag and Fodor (1995) defended this analysis on empirical
grounds, noting also the absence of (analogs of) traces in
CCG andf LFG.

m Sag, Wasow, and Bender (2003) barely mention traces.

Carl Pollard Traces Exist (Hypothetically)!

Natural Deduction

m Natural deduction (Gentzen 1934, Prawitz 1965) is a style
of theorem proving characterized by the presence of
inference rule schemas for introducing and eliminating
logical connectives (examples coming right up).

m Below we’ll focus on implicative linear logic (ILL), which
has just one connective —o (linear implication).
m The premisses and conclusion of rules are sequents of the
form I' - A, read ‘A is deducible from the hypotheses I".
m A is a formula, called the statement of the sequent
m [is a multiset of formulas, called the context of the sequent.

m Commas in contexts represent multiset union.

Carl Pollard Traces Exist (Hypothetically)!

Implicative Linear Logic (1/2)

m In ILL, the only rules are

Implication Elimination, aka Modus Ponens
I''AFB

N

'FA—-B AFA

Implication Introduction, aka Hypothetical Proof
'-A—-B

I'A+B
m Each rule is a local tree with the daughter(s) labelled by
premisses and the mother labelled by the conclusion.
m Contexts at each node represent undischarged hypotheses.
m There is also a logical axiom schema (Hypothesize):

AFA

Carl Pollard Traces Exist (Hypothetically)!

Implicative Linear Logic (2/2)

m With these, we can prove any ILL theorem, e.g. TR:
FA—o(A—-B)—B

AF(A—B)—B

AA—-BFB

AFA A—-oBFA-—©B

A proof is a tree.

m Each leaf is labelled by an axiom.
m Each nonleaf and its daughters instantiates one of the rules.

The sequent labelling the root is the theorem proved.

Carl Pollard Traces Exist (Hypothetically)!

ILL vs. PSG

m If only the natural deduction turnstile - and and Gazdar’s
slash / were the same thing, the Hypothesize axiom schema

AFA
would be the same as Gazdar’s syntactic category for traces
A/A
m That would only make sense if

m a grammar was a natural deduction system
m phrase structure trees were proof trees

m linguistic expressions were sequents

m lexical entries (not only traces) were axioms

m These things are all true!

m To see why, we have to reformulate PSG in terms of ILL.

Carl Pollard Traces Exist (Hypothetically)!

The Curry-Howard Correspondence (1/2)

m Curry (1958) and Howard (1969) discovered a connection
between implicative logic and lambda calculus: if we think
of formulas as types, then a formula is a theorem iff there
is a combinator (pure closed lambda term) of that type.

m For ILL, lambda terms are assigned to types/formulas is as
follows:
r: Az A

I A+ (M N):B

N

'M:A—-B AFN:A
'tA\,M:A—-B

I'x:A+-M:B

Carl Pollard Traces Exist (Hypothetically)!

The Curry-Howard Correspondence (2/2)

m For example, the fact that TR is a theorem corresponds to
the fact the combinator A;.(f x) has that type.

m We can see this by adding type annotations to the proof of
TR we just gave:

FAg(fz):A—(A—oB)—B

x:AFXN(fz):(A—B)—B

x: A f:A—oBF(fz):B

fitA—-BFf:A—oB z:A—ozx:A

m This correspondence between theorems and terms is called
the Curry-Howard correspondence.

Carl Pollard Traces Exist (Hypothetically)!

Phenogrammar and Tectogrammar

m In his one foray into linguistics, Curry (1961) proposed
that syntax should be bifurcated into phenogrammatical
structure (roughly, surface form) and tectogrammatical
structure (roughly, semantically motivated combinatorics).

m Curry’s idea influenced PSGians (Reape, Kathol) and
CGians (Dowty, Oehrle).

m In particular, Oehrle (1994) invented a kind of categorial
grammar based on ILL, here called linear grammar (LG).

m In the rest of this talk, I'll sketch how to logically
reconstruct the PSG theory of UDCs, by identifying
Gazdar’s / with the natural deduction turnstile .

Carl Pollard Traces Exist (Hypothetically)!

LG Basics: Phenogrammatical Types and Terms

m LG analyses consist of two simultaneous natural deduction
proofs, one in the pheno dimension and one in the tecto
dimension. (There is also a Montague-like semantic
dimension, omitted here.)

m The only base type in the pheno logic is s (string).
m If A and B are pheno types, sois A — B.

m The pheno proof is annotated with lambda terms, called
pheno terms, that encode the surface form.

m There are pheno constants of type s correponding to lexical
phonologies, such as he, is, easy, etc.

m There is also a pheno constant e of type s corresponding to
the null string.

m There is an (infix) constant - of type s — s — s for
concatenation.

Carl Pollard Traces Exist (Hypothetically)!

LG Basics: Tectogrammatical Types

m The base types for the tecto logic are:

St (finite clause)
S;i (infinitive clause)
Sp (base-form clause)
Q (embedded interrogative clause)
PrdA (predicative adjectival clause)
NP, (nominative NP)
NP, (accusative NP)
NP;¢ (dummy it)
PPgor (for-PP)
m If A and B are tecto types, so is A — B.

m There is no need to distinguish between (categorial) / vs. \
(as in CCG or Lambek calculus) because constituent
ordering is handled in the pheno component.

Carl Pollard Traces Exist (Hypothetically)!

LG Basics: Nonlogical Axioms (Lexical Entries)

Types of pheno terms are omitted to save space.
she = I she; NP,

he = F he; NP,

him = F him; NP,

her = F her; NP,

it = F it; NPj¢

pleases = - \g.t - pleases - s; NP, —o NP, —o S¢
please = - \,.please - s; NP, — NP, — Sy,
is=F Ag.t-is-u; (A — PrdA) — A — S¢
to="F As.to- s;(A — Sp) — (A — 5)

for = F \;.for - s;NP, —o PPgor

easy) = F Ag.easy - s-t; PPy — (NP, —0 Sj) —o NPy —o PrdA

Carl Pollard Traces Exist (Hypothetically)!

LG Basics: The Combine Rule

I',A+ (M N);B

I'-M;A—-B AFN;A

This is the LG version of Modus Ponens.
It replaces all the PSG phrasal schemas.
It is the only rule needed for analyzing local dependencies.

Think of a sequent I' - M; A — B as
[PHON M;HEAD B;SUBCAT A;SLASH T

m Combine incorporates the effect of

m the Head Feature Principle

m the Valence Principle (but only one argument is discharged
per rule application)

m the GAP Principle (sans STOP-GAP, which is handled by
the other rule).

Carl Pollard Traces Exist (Hypothetically)!

to please him

F to - please - him; VP;

PN

to I please - him; NP, — Sy,

please him

Here and henceforth VP; abbreviates NP, — S;.

Carl Pollard Traces Exist (Hypothetically)!

easy for her to please him

F easy - for - her - to - please - him; NPy; — PrdA

/\

F Aieasy - for - her - t; VP; —o NPj; —o PrdA F to - please - him; VP;

easyy F for- her; PPgo,

for her

Carl Pollard Traces Exist (Hypothetically)!

It is easy for her to please him

it - is - easy - for - her - to - please - him; S¢

/\

it F A\it-is-easy - for- her - to - please - him; NP —o S¢

/\

is F easy - for - her - to - please - him; NP;; —o PrdA

Carl Pollard Traces Exist (Hypothetically)!

LG Basics: The Stop-Gap Rule

THMM;A—B

I't; A+ M:;B

This is the LG version of Hypothetical Proof.
There is no PSG rule corresponding to this rule.

Instead, the PSG counterpart is the STOP-GAP (or
TO-BIND) feature on the lexical head of the Head-Filler
Rule and lexical entries like easy.

Stop-Gap discharges a hypothesis (trace) and lambda-binds
the string variable ¢ that it introduced.

Carl Pollard Traces Exist (Hypothetically)!

LG Basics: Trace

tAFt A

m This is the LG counterpart of the Hypothesize schema
m Here t is a variable of type s (string)

m A can be instantiated by any tecto type, e.g.
t; NP, - t; NP,
m Think of NP, - NP, as LG-ese for NP,[SLASH (NP,)].

Equipped with Stop-Gap and Trace, we can analyze UDCs
as soon as we add suitable lexical entries.

Carl Pollard Traces Exist (Hypothetically)!

LG Basics: Lexical Entries for UDCs

whom = F A\f.whom - (f e); (NP, — S¢) — Q
easyy =k Ay.easy-s- (f €); PPgor —o (NP, — VP;) — NP, — PrdA
In both of these lexical entries:
m one of the arguments has an NP, gap (which will have
been discharged by an application of Stop-Gap)

m The bound variable f is of type s — s (functions from
strings to strings), corresponding to the gappy argument

m when the lexical entry combines with that argument, the
null string e is lambda-converted into the gap position!

m As much as I would like to take credit for it, this bit of
pheno-technology was invented by Muskens (2007).

Carl Pollard Traces Exist (Hypothetically)!

whom she pleases

 whom - she - pleases - e; Q

N

whom + Agshe - pleases - s; NP, — S¢

s; NP, I she - pleases - s; S¢

T

she s;NP, F A\t pleases - s; NP, — S¢

pleases s;NP, I s;NP,

m The non-branching node is the instance of Stop-Gap that
binds the NP, trace.

m That together with the instance of Combine just above it
capture the effect of HPSG’s Filler-Head rule.

Carl Pollard Traces Exist (Hypothetically)!

to please ¢

F Asto - please - s; NP, — VP;

;NP4 - to - please - s; VP;

to s;NP, F please - s;NP, — Sy,

please s;NP,F s;NP,

Again, the nonbranching node is the instance of Stop-Gap that
binds the NP, trace.

Carl Pollard Traces Exist (Hypothetically)!

easy for her to please ¢
I easy - for - her - to - please - e; AP

F Ajeasy - for - her - (f e); (NPa — VPj) — AP F Asto - please - s; NPa — VP;

N

easyg F for - her; PPgo,

m Here AP abbreviates NP,, — PrdA.

m By the time easy combines with the infinitive VP, its NP,
gap has already been bound.

m So there is no need for easy to have a STOP-GAP feature.

Carl Pollard Traces Exist (Hypothetically)!

He is easy for her to please ¢

F he - is - easy - for - her - to - please; S¢

/\

he F \it-is-easy - for- her- to- please; NPy —o S¢

N

is F easy - for - her - to - please - e; AP

Carl Pollard Traces Exist (Hypothetically)!

Summary

We logically reconstructed PSG inside of linear grammar.

Phrase structure trees become natural-deduction proof trees.
Node labels become sequents.
SLASH becomes the turnstile () in sequents.

SLASH values become the contezts in sequents.

The valence features all become linear implication (—o).

m Traces become hypotheses (logical axioms).
m Other lexical entries become nonlogical axioms.

m The phrasal schemas collapse into Modus Ponens
(Combine).

m The only other rule is Hypothetical Proof (Stop-Gap),
which does the work of PSG’s STOP-GAP feature.

I wish we had known about natural deduction 30 years ago!

Carl Pollard Traces Exist (Hypothetically)!

References

Chomsky, N. 1973. Conditions on transformations. In S. Anderson and P. Kiparsky,
eds., Festschrift for Morris Halle. New York: Holt, Rinehart, and Winston, 232-285.

Chomsky, N. 1977. On wh-movement. In P. Culicover, T. Wasow, and A. Akmajian,
eds., Formal Syntaxr. New York: Academic Press, 71-132.

Chomsky, N. 1981. Lectures on Government and Binding. Dordrecht: Foris.

Curry, H. 1961. Some logical aspects of grammatical structure. In R. Jakobson, ed.,
Structure of Language in its Mathematical Aspects. Providence: American Mathematical
Society, 56-68.

Curry, H. and R. Feys. 1958. Combinatory Logic, Vol. 1. North-Holland.
Dollop, S. and I. Slag. 1987. Realist unification grammar. CSLI Monthly
2(6):2-3.

Gazdar, G., E. Klein, G. Pullum, and I, Sag. 1985. Generalized Phrase Structure
Grammar. Cambridge, MA: Harvard University Press.

Muskens, R. 2007. Separating syntax and combinatorics in categorisl grammar. Research
on Language and Computation 5(3):267-285.

Pollard, C. 1988. Categorial grammar and phrase structure grammar. In R. Oehrle,
E. Bach, and D. Wheeler, eds..Categorial Grammars and Natural Language structures.
Dordrecht:Reidel, 391-416.

Pollard, C. and I. Sag. 1994 Head-Driven Phrase Structure Grammar. Stanford: CSLI
Publications and Chicago: University of Chicago Press.

Oehrle, R. 1994. Term-labelled categorial type systems. Linguistics and Philosophy
17(6):633-678.

Sag, I. and J. Fodor. 1995. Extraction without traces. R. Aranovich et al., eds., The
Proceedings of the 13th West Coast Conference on Formal Linguistics’ . Stanford : CSLI
Publications, 365-384.

Sag, I., T. Wasow, and E. Bender. 2003. Syntactic Theory. Stanford: CSLI Publications.
Wasow, T. 1972. Anaphoric Relations in English. Ph.D. dissertation, MIT.

Carl Pollard Traces Exist (Hypothetically)!

