Gibbs Sampler Examples =============================== .. highlight:: r Bivariate Normal --------------------- Suppose we want to simulate from a centered bivariate normal (:math:`\mu=0`) with correlation :math:`\rho` and variances both 1 and we know that :math:`X|y \sim \mathcal{N}(\rho y,1-\rho^2)` (A proof can be found `here `_ ):: ##########################################Function###### gibbsNimate <- function(NSimul=50, rho=0.5, x0=1, y0=1) { ##NSimul=Number of simulations ##rho is the correlation ##x0 and y0 are the starting values ## plot the 95% contour of the theoretical normal ## plot(ellipse(rho), type="l", main="Bivariate Normal", col="green") dev.hold() ## initialization x <- rep(0, NSimul) y <- rep(0, NSimul) x[1]=x0 y[1]=y0 ## Gibbs sampler and plot points for(b in 2:NSimul) { plot(ellipse(rho), type="l", main="Bivariate Normal") points(x[1:(b-1)], y[1:(b-1)]) dev.hold() ## sample the x direction conditional on y x[b] <- rnorm(1, rho*y[b-1], sqrt(1-rho^2)) lines(c(x[b-1], x[b]), c(y[b-1], y[b-1])) ## sample the y direction conditional on x y[b] <- rnorm(1, rho*x[b], sqrt(1-rho^2)) lines(c(x[b], x[b]), c(y[b-1], y[b])) ani.pause() points(x[b], y[b],col="red") } ## return the draws return(cbind(x,y)) } If we run this function with a correlation of 0.5. :: ################# require(ellipse) require(animation) #oopt = ani.options(interval = 2) #gibbsNimate(50,rho=0.5) We obtain the 50 first steps: |animatedgif| .. |animatedgif| image:: ./_static/Gibbsanimation.gif :width: 500pt :height: 500pt