Reading: VDV Chapter 5.1-5.6; ELST Chapter 7.1-7.3

Outline of Lecture 2:

1. Basic consistency and identifiability
2. Asymptotic Normality
 (a) Taylor expansions
 (b) Classical log-likelihood & asymptotic normality
 (c) Fisher Information

Recap of Delta Method Last lecture, we discussed the Delta Method (aka Taylor expansions). The basic idea was as follows:

Claim 1. If $r_n(T_n - \theta) \xrightarrow{d} T$, and $\phi : \mathbb{R}^d \rightarrow \mathbb{R}^k$ is smooth, then $r_n(\phi(T_n) - \phi(\theta)) \rightarrow \phi'(\theta) T$, if $\phi'(\theta) \neq 0$.

Idea of proof:

\[
\begin{align*}
r_n(\phi(T_n) - \phi(\theta)) &= r_n(\phi'(\theta)(T_n - \theta) + o_p(T_n - \theta)) \\
&= r_n(\phi'(\theta)(T_n - \theta)) + o_p(r_n(T_n - \theta)) \\
&= r_n(\phi'(\theta)(T_n - \theta)) + o_p(1) \\
&\xrightarrow{d} \phi'(\theta) T.
\end{align*}
\]

Notation: (from now on) Given distribution P on \mathcal{X}, function $f : \mathcal{X} \rightarrow \mathbb{R}^d$,

\[
Pf := \int f dP = \int_{\mathcal{X}} f(x) dP(x) = \mathbb{E}_P[f(x)]
\]

Example 1 (Empirical distributions): Consider the observations $x_1, x_2, \ldots, x_n \in \mathcal{X}$. Let the empirical distribution $P_n = \frac{1}{n} \sum_{i=1}^{n} 1_{x_i}$. For any set $A \subseteq \mathcal{X}$,

\[
P_n(A) = \frac{1}{n} |\{i \in [n] : x_i \in A\}| = P_n 1_{\{x \in A\}}.
\]

Hence for any function f, $P_n f = \frac{1}{n} \sum_{i=1}^{n} f(x_i)$. ☞
Taylor expansions

1. Real-valued functions

For \(f : \mathbb{R}^d \to \mathbb{R} \) differentiable at \(x \in \mathbb{R}^d \),
\[
f(y) = f(x) + \nabla f(x)^T (y - x) + o(\|y - x\|). \text{ (Remainder version)}
\]
\[
f(y) = f(x) + \nabla f(\bar{x})^T (y - x). \text{ (Mean value version)}
\]

If \(f \) is twice differentiable,
\[
f(y) = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2}(y - x)^T \nabla^2 f(x)(y - x) + o(\|y - x\|^2). \text{ (Remainder version)}
\]
\[
f(y) = f(x) + \nabla f(x)^T (y - x) + \frac{1}{2}(y - x)^T \nabla^2 f(\bar{x})(y - x). \text{ (Mean value version)}
\]

2. Vector-valued functions

Let \(f : \mathbb{R}^d \to \mathbb{R}^k \), \(f(x) = \begin{bmatrix} f_1 \\ f_2 \\ \vdots \\ f_k \end{bmatrix} \). Define \(Df(x) = \begin{bmatrix} \nabla f_1^T(x) \\ \nabla f_2^T(x) \\ \vdots \\ \nabla f_k^T(x) \end{bmatrix} \in \mathbb{R}^{k \times d} \) to be the Jacobian of \(f \).

Then,
\[
f(y) = f(x) + Df(x)(y - x) + o(\|y - x\|). \text{ (Remainder version)}
\]

But for mean value version, we don’t necessarily have \(\bar{x} \) such that
\[
f(y) = f(x) + Df(\bar{x})(y - x).
\]

Example 2 (Failure of mean value version): Let \(f : \mathbb{R} \to \mathbb{R}^k \), \(f(x) = \begin{bmatrix} x \\ x^2 \\ \vdots \\ x^k \end{bmatrix} \), then \(Df(x) = \begin{bmatrix} 1 \\ 2x \\ \vdots \\ kx^{k-1} \end{bmatrix} \). Take \(x = 0, y = 1 \), then \(f(y) - f(x) = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \). Yet \(Df(\bar{x}) = \begin{bmatrix} 1 \\ 2\bar{x} \\ \vdots \\ k\bar{x}^{k-1} \end{bmatrix} \neq \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \). ♣

Example 3 (Quantitative continuity guarantees): Recall the operator norm of \(A \) is
\[
\|A\|_{op} = \sup_{\|u\|_2 = 1} \|Au\|_2,
\]
this implied that \(\|Ax\|_2 \leq \|A\|_{op}\|x\|_2 \). For \(f : \mathbb{R}^d \to \mathbb{R}^k \), differentiable, assume that \(Df \) is \(L \)-Lipschitz, i.e. \(\|Df(x) - Df(y)\|_{op} \leq L\|x - y\|_2 \). (Roughly, this means that \(\|D^2 f(x)\| \leq L \))

Claim 2. We have
\[
f(y) = f(x) + Df(x)(y - x) + R(y - x),
\]
where \(R \) is a remainder matrix (depending on \(x, y \)) that satisfy \(\|R\|_{op} \leq \frac{L}{2} \|y - x\| \) and \(\|R(y - x)\| \leq \frac{L}{2} \|y - x\|^2 \).
Proof Define \(\phi_i(t) = f_i((1-t)x + ty), \) \(\phi_i : [0, 1] \to \mathbb{R} \). Note that \(\phi_i(0) = f_i(x), \phi_i(1) = f_i(y), \) and \(\phi'_i = (\nabla f_i((1-t)x + ty))^T(y-x) \). Then

\[
Df((1-t)x + ty)(y-x) = \begin{bmatrix}
\nabla f^T_1((1-t)x + ty) \\
\nabla f^T_2((1-t)x + ty) \\
\vdots \\
\nabla f^T_k((1-t)x + ty)
\end{bmatrix}(y-x) = \begin{bmatrix}
\phi'_1(t) \\
\phi'_2(t) \\
\vdots \\
\phi'_k(t)
\end{bmatrix}.
\]

Since \(\phi_i(1) - \phi_i(0) = \int_0^1 \phi'_i(t)dt, \)

\[
f(y) - f(x) = \int_0^1 Df((1-t)x + ty)(y-x)dt = \int_0^1 (Df((1-t)x + ty) - Df(x))(y-x)dt + Df(x)(y-x).
\]

To bound the remainder term,

\[
\left\| \int_0^1 (Df((1-t)x + ty) - Df(x))(y-x)dt \right\| \leq \int_0^1 \left\| (Df((1-t)x + ty) - Df(x))(y-x) \right\| dt \\
\leq \int_0^1 \|Df((1-t)x + ty) - Df(x)\|_{op}\|y-x\| dt \\
\leq \int_0^1 L\|y-x\|\|y-x\| dt \\
\leq \int_0^1 Lt\|y-x\|^2 dt \\
= \frac{L}{2}\|y-x\|^2.
\]

\(\square \)

Consistency and asymptotic distribution:

Setting:

1. We have some model family \(\{P_\theta\}_{\theta \in \Theta} \) of distributions on \(\mathcal{X} \), where \(\Theta \subseteq \mathbb{R}^d \). Also, assume all \(P_\theta \) have density \(p_\theta \) with respect to base measure \(\mu \) on \(\mathcal{X} \), i.e. \(p_\theta = \frac{dP_\theta}{d\mu} \).

2. We consider the log-likelihood of the distribution \(\ell_\theta(x) = \log p_\theta(x) \), with

\[
\nabla \ell_\theta(x) := \left[\frac{\partial}{\partial \theta_j} \log p_\theta(x) \right]_{j=1}^d \in \mathbb{R}^d
\]

\[
\nabla^2 \ell_\theta(x) := \left[\frac{\partial^2}{\partial \theta_i \theta_j} \log p_\theta(x) \right]_{i,j=1}^d \in \mathbb{R}^{d \times d}
\]

For simplicity, we will denote: \(\hat{\ell}_\theta \equiv \nabla \ell_\theta(x) \) and \(\ddot{\ell}_\theta \equiv \nabla^2 \ell_\theta(x) \).

The gradient of the log-likelihood is often called the “score function.” We will use this term to refer to \(\nabla \ell_\theta(x) \) throughout future lectures.
3. Observe \(X_i \overset{iid}{\sim} P_{\theta_0} \) where \(\theta_0 \) is unknown. Our goal is to estimate \(\theta_0 \).

4. A standard estimator is to choose \(\hat{\theta}_n \) to maximize the “likelihood,” i.e. the probability of the data.

\[
\hat{\theta}_n \in \arg\max_{\theta \in \Theta} P_n\ell_\theta(x)
\]

Main questions:

1. Consistency: does \(\hat{\theta}_n \overset{P}{\to} \theta_0 \) as \(n \to +\infty \)?

2. Asymptotic distribution: does \(r_n(\hat{\theta}_n, \theta_0) \) converge in distribution?

3. Optimality? (in the next lecture)

Consistency:

Definition 0.1 (Identifiability). A model \(\{P_\theta\}_{\theta \in \Theta} \) is **identifiable** if \(P_{\theta_1} \neq P_{\theta_2} \) for all \(\theta_1, \theta_2 \in \Theta \) \((\theta_1 \neq \theta_2)\).

Equivalently, \(D_{KL}(P_{\theta_1} \mid P_{\theta_2}) > 0 \) when \(\theta_1 \neq \theta_2 \). Recall that \(D_{KL}(P_{\theta_1} \mid P_{\theta_2}) = \int \log \frac{dP_{\theta_1}}{dP_{\theta_2}} dP_{\theta_1} \).

Note that \(P_{\theta_1} \neq P_{\theta_2} \) means that \(\exists A \subseteq \mathcal{X} \) such that \(P_{\theta_1}(A) \neq P_{\theta_2}(A) \).

Now that we have established what both identifiability and consistency mean, we can prove a basic result regarding the finite consistency of the Maximum Likelihood estimator (MLE).

Proposition 3 (Finite \(\Theta \) consistency of MLE). Suppose \(\{P_\theta\}_{\theta \in \Theta} \) is identifiable and \(\text{card} \Theta < \infty \). Then, if \(\hat{\theta}_n := \arg\max_{\theta \in \Theta} P_n\ell_\theta(x) \), \(\hat{\theta}_n \overset{P}{\to} \theta_0 \) when \(X_i \overset{iid}{\sim} P_{\theta_0} \).

Proof of Proposition By the Strong Law of Large Numbers, we know that \(P_n\ell_\theta(x) \overset{a.s.}{\to} P_{\theta_0}\ell_\theta(x) \) when \(x_i \overset{iid}{\sim} P_{\theta_0} \).

\[
P_{\theta_0}\ell_{\theta_0}(x) - P_{\theta_0}\ell_\theta(x) = \mathbb{E}_{\theta_0} \left[\log \frac{p_{\theta_0}(x)}{p_\theta(x)} \right] = D_{KL}(P_{\theta_0} \mid P_\theta)
\]

We know that \(D_{KL}(P_{\theta_0} \mid P_\theta) > 0 \) unless \(\theta = \theta_0 \). Combining this remark with \(P_n\ell_{\theta_0}(x) - P_n\ell_\theta(x) \overset{a.s.}{\to} \)

\(D_{KL}(P_{\theta_0} \mid P_\theta) \), we deduce that there exists \(N(\theta) \) such that for all \(n > N(\theta) \), we have \(P_n\ell_{\theta_0}(x) - P_n\ell_\theta(x) > 0 \) with probability 1.

It follows that for \(n > \max_{\theta \in \Theta, \theta \neq \theta_0} N(\theta) \), we have \(P_n\ell_{\theta_0}(x) > P_n\ell_\theta(x) \) for all \(\theta \neq \theta_0 \). Therefore \(\hat{\theta}_n = \theta_0 \) and we conclude that, for sufficiently large \(n \) and finite \(\Theta \), we have \(\hat{\theta}_n = \theta_0 \) “eventually.” \(\square \)

Remark The above result can fail for \(\Theta \) infinite even if \(\Theta \) is countable.

Uniform law: One sufficient condition often used for consistency results is a uniform law, i.e. for \(x_i \overset{iid}{\sim} P \), we have \(\sup_{\theta \in \Theta} |P_n\ell_\theta - P\ell_\theta| \overset{P}{\to} 0 \). In this case, if \(P_{\theta_0}\ell_\theta < P_{\theta_0}\ell_{\theta_0} - 2\varepsilon \) and \(\sup_{\theta \in \Theta} |P_n\ell_\theta - P_{\theta_0}\ell_\theta| \leq \varepsilon \), then \(\hat{\theta}_n \neq \theta \). We will have:

\[
\hat{\theta}_n \in \{ \theta : P_{\theta_0}\ell_\theta \geq P_{\theta_0}\ell_{\theta_0} - 2\varepsilon \}
\]
Now, that we have established some basic definitions and results regarding the consistency of estimators, we turn our attention to understanding their asymptotic behavior.

Asymptotic Normality via Taylor Expansions:

Definition 0.2 (Operator norm). \(\|A\|_{op} := \sup_{\|u\|_2 \leq 1} \|Au\|_2 \).

Note: \(A \in \mathbb{R}^{k \times d}, u \in \mathbb{R}^d \) and \(\|Ax\|_2 \leq \|A\|_{op} \|x\|_2 \).

Before we do anything, we have to make several assumptions.

1. We have a “nice, smooth” model, i.e. the Hessian is Lipschitz-continuous. To be rigorous, the following must hold:
 \[
 \|\nabla^2 \ell_1(x) - \nabla^2 \ell_2(x)\|_{op} \leq M(x) \|\theta_1 - \theta_2\|_2 \quad \mathbb{E}_\theta[M^2(x)] < \infty
 \]

2. The MLE, \(\hat{\theta}_n \in \arg\max_{\theta \in \Theta} P_n \ell_\theta(x) \), is consistent, i.e. \(\hat{\theta}_n \xrightarrow{P} \theta_0 \) under \(P_{\theta_0} \).

3. \(\Theta \) is a convex set.

Theorem 4. Let \(x_i \overset{\text{iid}}{\sim} P_{\theta_0}, \hat{\theta}_n \) be the MLE (i.e. \(\nabla P_{\theta_0} \ell_{\theta_0} = 0 \)) and assume the conditions stated above. Then, \(\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{d} \mathcal{N}(0, (P_{\theta_0} \nabla^2 \ell_{\theta_0})^{-1}P_{\theta_0} \nabla \ell_{\theta_0} \nabla^T \ell_{\theta_0}(P_{\theta_0} \nabla^2 \ell_{\theta_0})^{-1}) \).

Remark Let us rewrite the asymptotic variance. Given that \(\nabla^2 \ell_\theta = \nabla \left(\frac{\nabla p_\theta}{p_\theta} \right) = \frac{\nabla^2 p_\theta}{p_\theta} - \frac{\nabla p_\theta \nabla p_\theta^T}{p_\theta^2} \):

\[
\mathbb{E}_\theta \left[\frac{\nabla^2 p_\theta}{p_\theta} \right] = \int \frac{\nabla^2 p_\theta}{p_\theta} p_\theta d\mu = \int \nabla^2 p_\theta d\mu = \nabla^2 \int p_\theta d\mu = 0
\]

As a result:

\[
\mathbb{E}_\theta[\nabla^2 \ell_\theta] = -\mathbb{E}_\theta \left[\left(\frac{\nabla p_\theta}{p_\theta} \right) \left(\frac{\nabla p_\theta}{p_\theta} \right)^T \right] = -\text{Cov}_\theta(\nabla \ell_\theta(x))
\]

We define the Fisher Information as \(I_\theta := \mathbb{E}_\theta[\nabla \ell_\theta(x) \nabla \ell_\theta(x)^T] = \text{Cov}_\theta \nabla \ell_\theta \) where the final equality holds because \(\mathbb{E}_\theta[\nabla \ell_\theta(x)] = 0 \) (\(\theta \) maximizes \(\mathbb{E}_\theta[\ell_\theta(x)] \)). To show this, assume that we can swap \(\nabla, \mathbb{E} \). Then, \(\nabla \ell_\theta(x) = \nabla \log p_\theta(x) = \frac{\nabla p_\theta(x)}{p_\theta(x)} \). Using that result, we see that:

\[
\mathbb{E}_\theta[\nabla \ell_\theta] = \mathbb{E} \left[\frac{\nabla p_\theta}{p_\theta} \right] = \int \frac{\nabla p_\theta}{p_\theta} p_\theta d\mu = \int \nabla p_\theta d\mu = \nabla \int p_\theta d\mu = \nabla(1) = 0
\]

We now have a more compact representation of the asymptotic distribution described in the Theorem above.

\[
\sqrt{n}(\hat{\theta}_n - \theta_0) \xrightarrow{d} \mathcal{N}(0, I_{\theta_0}^{-1} I_{\theta_0} I_{\theta_0}^{-1}) = \mathcal{N}(0, I_{\theta_0}^{-1})
\]

Consider \(I_\theta = -\nabla^2 \mathbb{E}[\ell_\theta(x)] \). If the magnitude of the second derivative is “large,” that implies that the log-likelihood is steep around the global maximum (making it “easy” to find). Alternatively, if the magnitude of \(-\nabla^2 \mathbb{E}[\ell_\theta(x)] \) is “small,” we do not have sufficient curvature to find the optimal \(\theta \).
Proof \ Let \(\hat{r}(x) \in \mathbb{R}^{d \times d} \) be the remainder matrix in Taylor expansion of the gradients of the individual log likelihood terms around \(\theta_0 \) guaranteed by Taylor’s theorem (which certainly depends on \(\hat{\theta}_n - \theta_0 \)), that is,
\[
\nabla \ell_{\hat{\theta}_n}(x) = \nabla \ell_{\theta_0}(x) + \nabla^2 \ell_{\theta_0}(x)(\hat{\theta}_n - \theta_0) + \hat{r}(x)(\hat{\theta}_n - \theta_0),
\]
where by Taylor’s theorem \(\|\hat{r}(x)\|_{op} \leq M(x)\|\hat{\theta}_n - \theta_0\| \). Writing this out using the empirical distribution and that \(\hat{\theta}_n = \arg\max_\theta P_n \ell_\theta(X) \), we have
\[
\nabla P_n \ell_{\hat{\theta}_n} = 0 = P_n \nabla \ell_{\theta_0} + P_n \nabla^2 \ell_{\theta_0}(\hat{\theta}_n - \theta_0) + P_n \hat{r}(X)(\hat{\theta}_n - \theta_0). \tag{1}
\]
But of course, expanding the term \(P_n \hat{r}(X) \in \mathbb{R}^{d \times d} \), we find that
\[
P_n \hat{r}(X) = \frac{1}{n} \sum_{i=1}^{n} \hat{r}(X_i) \quad \text{and} \quad \|P_n \hat{r}\|_{op} \leq \frac{1}{n} \sum_{i=1}^{n} M(X_i) \|\hat{\theta}_n - \theta_0\| = o_P(1).
\]
In particular, revisiting expression (1), we have
\[
0 = P_n \nabla \ell_{\theta_0} + P_n \nabla^2 \ell_{\theta_0}(\hat{\theta}_n - \theta_0) + o_P(1)(\hat{\theta}_n - \theta_0).
\]

\[
= P_n \nabla \ell_{\theta_0} + (P_{\theta_0} \nabla^2 \ell_{\theta_0} + (P_n - P_{\theta_0}) \nabla^2 \ell_{\theta_0} + o_P(1))(\hat{\theta}_n - \theta_0).
\]
The strong law of large numbers guarantees that \((P_n - P_{\theta_0}) \nabla^2 \ell_{\theta_0} = o_P(1)\), and multiplying each side by \(\sqrt{n}\) yields
\[
\sqrt{n}(P_{\theta_0} \nabla^2 \ell_{\theta_0} + o_P(1))(\hat{\theta}_n - \theta_0) = -\sqrt{n}P_n \nabla \ell_{\theta_0}.
\]
Applying Slutsky’s theorem gives the result: indeed, we have \(T_n = \sqrt{n}P_n \nabla \ell_{\theta_0}\) satisfies \(T_n \overset{d}{\to} \mathcal{N}(0, I_{\theta_0})\) by the central limit theorem, and noting that \(P_{\theta_0} \nabla^2 \ell_{\theta_0} + o_P(1)\) is eventually invertible gives
\[
\sqrt{n}(\hat{\theta}_n - \theta_0) \overset{d}{\to} \mathcal{N}(0, (P_{\theta_0} \nabla^2 \ell_{\theta_0})^{-1} I_{\theta_0}(P_{\theta_0} \nabla^2 \ell_{\theta_0})^{-1})
\]
as desired. \qed