Warning: these notes may contain factual errors

Reading:

Recap

For a function class \mathcal{F}, we defined a \mathcal{F}-norm

$$||P_n - P||_{\mathcal{F}} := \sup_{f \in \mathcal{F}} |P_nf - Pf|$$

We say that \mathcal{F} satisfies a uniform law of large numbers if $\lim_{n \to \infty} ||P_n - P||_{\mathcal{F}} = 0$. Last time we discussed ϵ-covers and ϵ-brackets that allowed us to prove such ULLN statements.

Outline

- Glivenko Cantelli Classes
- Symmetrization Inequalities
- Subgaussian Processes
- Chaining and Entropy Integrals

Throughout this lecture we will be building up machinery that will allow us to get a handle on the behavior of $||P_n - P||_{\mathcal{F}}$.

1 GC Classes and Symmetrization

Definition 1.1. \mathcal{F} is a Glivenko Cantelli Class with respect to P if $||P_n - P||_{\mathcal{F}} \xrightarrow{P} 0$.

Example 1: In Homework 1, we showed that for the class $\mathcal{F} = \{1_{[x \leq t]} : t \in \mathbb{R}\}$, $||P_nf - Pf||_{\mathcal{F}} = o_P(1)$, hence \mathcal{F} is a GC class. In particular,

$$\mathbb{P}[\sup_{t} |P_n(X \leq t) - P(X \leq t)| > \epsilon] \leq 2 \exp(-c\epsilon^2)$$

A next natural question then, is how show that a certain function class \mathcal{F} is a GC class. Certainly by Markov’s Inequality we can say

$$\mathbb{P}\left[\sup_{f} |P_nf - Pf| \geq t\right] \leq \frac{1}{t} \mathbb{E}\left[\sup_{f} |P_nf - Pf|\right]$$

$$= \frac{1}{nt} \mathbb{E}\left[\sup_{f} \sum_{i=1}^{n} f(X_i) - \mathbb{E}f(X_i)\right]$$

We will now develop some tools to handle this expectation term.
Definition 1.2. A **Rademacher** random variable is one which takes values in \{-1, 1\} with equal probability.

Theorem 1. (Symmetrization)

If \(X_1, \ldots, X_n\) are random vectors in a vector space equipped with a norm \(\|\cdot\|\) and \(\epsilon_1, \ldots, \epsilon_n\) are i.i.d. Rademacher random variables which are independent of the \(X_i\)'s, then for \(p \geq 1\),

\[
E \left[\left\| \sum_{i=1}^{n} X_i - E[X_i] \right\|^p \right] \leq 2^p E \left[\left\| \sum_{i=1}^{n} \epsilon_i X_i \right\|^p \right] \tag{3}
\]

Proof

Let \(X'_i\) be a random variable that has the same distribution as \(X_i\) and is independent from \(X_i\). Then

\[
E \left[\left\| \sum_{i=1}^{n} X_i - E[X_i] \right\|^p \right] = E \left[\left\| \sum_{i=1}^{n} X_i - E[X'_i] \right\|^p \right]
\]

Jensen’s Inequality \(\rightarrow\) \(\leq E \left[\left\| \sum_{i=1}^{n} X_i - X'_i \right\|^p \right] \)

Since \(X_i, X'_i\) are independent and have the same distribution, \(X_i - X'_i\) is symmetric about 0, so in particular it has the same distribution as \(\epsilon_i(X_i - X'_i)\). Hence,

\[
E \left[\left\| \sum_{i=1}^{n} X_i - X'_i \right\|^p \right] = E \left[\left\| \sum_{i=1}^{n} \epsilon_i X_i - \sum_{i=1}^{n} \epsilon_i X'_i \right\|^p \right]
\]

\[
= 2^p E \left[\left\| \frac{1}{2} \sum_{i=1}^{n} \epsilon_i X_i - \frac{1}{2} \sum_{i=1}^{n} \epsilon_i X'_i \right\|^p \right]
\]

Convexity Property \(\rightarrow\) \(\leq 2^p \left(\frac{1}{2} \left\| \sum_{i=1}^{n} \epsilon_i X_i \right\|^p + \frac{1}{2} \left\| \sum_{i=1}^{n} \epsilon_i X'_i \right\|^p \right) \)

\[
= 2^p \left\| \sum_{i=1}^{n} \epsilon_i X_i \right\|^p
\]

\(\square\)

Example 2: (Rademacher Complexity)

If \(F\) is a function class, then by symmetrization,

\[
\frac{1}{2} E \left[\sup_{f \in F} \left| P_n f - PF \right| \right] \leq E \left[\sup_{f \in F} \left| \frac{1}{n} \sum_{i=1}^{n} \epsilon_i f(X_i) \right| \right] \tag{4}
\]

The term on the right is known as the **Rademacher Complexity** of \(F\).

\(\blacklozenge\)

2 Subgaussian Processes

Definition 2.1. Let \(\{X_t\}_{t \in T}\) be a collection of real valued random variables. This is a **Stochastic Process** indexed by \(T\).
Remark All processes we deal with in this class will be separable, i.e. there exists a countable set T' such that $\sup_{t \in T'} |X_t| = \sup_{t \in T} |X_t|$.

Definition 2.2. Let (T, d) be a metric space. We say $\{X_t\}_{t \in T}$ is a subgaussian process if

$$\log \mathbb{E}[\exp (\lambda (X_s - X_t))] \leq \frac{\lambda^2 d(s, t)^2}{2}$$

for all $\lambda > 0, s, t \in T$.

Remark One might expect a subgaussian constant σ^2 to appear in (5), i.e. the upper bound should be $\frac{\lambda^2 \sigma^2 d(s, t)^2}{2}$, however, the metric is chosen so that the subgaussian constant is absorbed into the metric d.

Example 3: A gaussian process is an example of a subgaussian process. To see this, let $T = \mathbb{R}^d$, and $Z \sim \mathcal{N}(0, \sigma^2 I_d)$, define $X_t = \langle Z, t \rangle$. Note that $X_s - X_t = \langle Z, s - t \rangle$ has a normal distribution with mean zero and variance $||s - t||^2 \sigma^2$, therefore $\log \mathbb{E}[e^{\lambda (X_s - X_t)}] \leq \frac{1}{2} \lambda^2 \sigma^2 ||s - t||^2$.

Example 4: (Rademacher Process with a loss function) Let T be a vector space equipped with a norm $||\cdot||$, $X_i \in X$ are random variables and $\ell : T \times X \to \mathbb{R}$ is lipschitz in its first argument, meaning that $|\ell(s, x) - \ell(t, x)| \leq ||t - s||$ for all $x \in X, s, t \in T$.

Then for $\{\epsilon_i\}_{i=1}^n$ i.i.d. Rademacher random variables, because $\epsilon_i (\ell(t, X_i) - \ell(s, X_i))$ is bounded between $-||s - t||$ and $||s - t||$, it is subgaussian, hence

$$\mathbb{E} \left[\exp \left(\lambda \sum_{i=1}^n \epsilon_i (\ell(t, X_i) - \ell(s, X_i)) \right) \right] \leq \mathbb{E} \left[\exp \left(\lambda \sum_{i=1}^n \epsilon_i (\ell(t, X_i) - \ell(s, X_i)) \right) | X \right]$$

$$\leq \mathbb{E} \left[\exp \left(\frac{\lambda^2}{8} \sum_{i=1}^n (\ell(t, X_i) - \ell(s, X_i))^2 \right) | X \right]$$

$$\leq \exp \left(\frac{\lambda^2}{8} \sum_{i=1}^n ||t - s||^2 \right)$$

$$= \exp \left(\frac{\lambda^2 n ||s - t||^2}{8} \right)$$

So if $Z_t = \sum_{i=1}^n \epsilon_i \ell(t, x_i)$ then the stochastic process $\{X_t\}_{t \in T}$ is $\frac{\lambda^2}{4} ||\cdot||^2$-subgaussian.

3 **Chaining and Entropy Integrals**

Recall from (1) that we are interested in $\mathbb{E}[\sup_{f \in F} |P_n f - Pf|]$. By symmetrization (3) we can upper bound our desired quantity by $\mathbb{E} \left[\sup_{f \in F} \left| \frac{1}{n} \sum_{i=1}^n \epsilon_i f(X_i) \right| \right]$. Therefore, we wish to understand quantities of the form $\mathbb{E}[\sup_{t \in T} X_t]$.

3
Let \(\{X_t\}_{t \in T} \) be a \(d^2(\cdot, \cdot) \) subgaussian process. We will approximate \(X_t \) by finer and finer discretizations in the following way: Let \(D = \text{diam}(T) = \sup_{s,t \in T} d(s, t) \), and assume \(D < \infty \). Let \(T_0 \subset T_1 \subset T_2 \subset \ldots \subset T \) be a sequence of minimal covers of \(T \) where \(T_k \) is a minimal \(2^{-k}D \) cover of \(T \).

For \(t \in T \), consider the “best” sequence \(t_0, t_1, \ldots \) converging to \(t \) so that \(t_k \in T_k \). Let \(\pi_i(t) := \arg\min_{t \in T_i} d(t, t) \leq 2^{-i}D \). For any \(k \in \mathbb{N} \), for \(t \in T_k \) define \(\pi(t) = \pi_i(\pi_{i+1}(t)) \). In other words, you are projecting \(k - i \) times. Now for any \(t \in T_k \),

\[
X_t = X_{\pi_k(t)} = (X_{\pi_k(t)} - X_{\pi_{k-1}(t)}) + X_{\pi_{k-1}(t)} = (X_{\pi_k(t)} - X_{\pi_{k-1}(t)}) + (X_{\pi_{k-1}(t)} - X_{\pi_{k-2}(t)}) + X_{\pi_{k-2}(t)}
\]

\[
= X_{t_0} + \sum_{i=1}^{k} X_{\pi_i(t)} - X_{\pi_{i-1}(t)}
\]

So if we take a maximum over all \(t \in T_k \), and noting that \(X_{t_0} = 0 \), we see that:

\[
\max_{t \in T_k} X_t = \max_{t \in T_k} \sum_{i=1}^{k} X_{\pi_i(t)} - X_{\pi_{i-1}(t)}
\]

\[
\leq \sum_{i=1}^{k} \max_{t \in T_i} X_{\pi_i(t)} - X_{\pi_{i-1}(t)}
\]

\[
= \sum_{i=1}^{k} \max_{t \in T_i} X_{\pi_i(t)} - X_{\pi_{i-1}(t)}
\]

Since \(T_i \) is a \(2^{-i}D \) cover of \(T \), \(d(t, \pi_{i-1}(t)) \leq 2^{-i}D \). Therefore by the subgaussianity assumption, \(X_{\pi_{i-1}(t)} - X_{\pi_{i-1}(t)} \) is \(2^{2-2i}D \) subgaussian. Next we will use the following fact:

Fact 2. If \(X_1, \ldots, X_n \) are independent \(\sigma^2 \)-subgaussian random variables, \(\mathbb{E}[\max_k X_k] \leq \sqrt{2\sigma^2 \log n} \)

Because there are \(N(T, 2^{-i}D) \) elements in \(T_{i-1} \), applying the fact gives:

\[
\mathbb{E} \left[\max_{t \in T_k} (X_{\pi_{i-1}(t)} - X_{\pi_{i-1}(t)}) \right] \leq \sqrt{8D^24^{-i} \log N(T, 2^{-i}D)}
\]

Therefore by linearity of expectation, we have

\[
\mathbb{E} \left[\max_{t \in T_k} X_t \right] \leq 2\sqrt{2D} \sum_{i=1}^{k} 2^{-i} \sqrt{\log N(T, 2^{-i}D)}
\]

By separability, \(\lim_{k \to \infty} \max_{t \in T_k} X_t = \sup_{t \in T} X_t \). Since the sets \(\{T_k\}_{k=1}^{\infty} \) are nested, \(\max_{t \in T_k} X_t \) is an increasing sequence in \(k \). Thus by the Monotone Convergence Theorem,

\[
\mathbb{E} \left[\sup_{t \in T} X_t \right] \leq 2\sqrt{2D} \sum_{i=1}^{\infty} 2^{-i} \sqrt{\log N(T, 2^{-i}D)}
\]

via the integral test \(\to \leq 2\sqrt{2D} \int_0^1 \epsilon \sqrt{\log N(T, D\epsilon)} \, d\epsilon \)

\[
\text{Change of variables \to} = 4\sqrt{2} \int_0^{\text{diam}(T)} \sqrt{\log N(T, \epsilon)} \, d\epsilon
\]
The integral on the right is known as the **Entropy Integral**.