Stats300b Problem Set 6
Due: Thursday, February 23 at beginning of class

Exercises 7.3, 7.4, 7.5, 1.11, 7.8

Answer to 7.3: We begin with a slightly more general statement. Let \(\| \cdot \| \) be an arbitrary norm and consider its dual norm \(\| \cdot \|_\ast \), where \(\| x \|_\ast = \sup_{\| y \| \leq 1} \langle x, y \rangle \) (and \(\| x \| = \sup_{\| y \| \leq 1} \langle x, y \rangle \) in a finite dimensional space). Then if \(F = \{ \langle \theta, x \rangle \mid \| \theta \| \leq r \} \), we have

\[
R_n(F \mid x_{1:n}) = \frac{1}{n} \mathbb{E} \left[\sup_{\| \theta \| \leq r} \sum_{i=1}^{n} \varepsilon_i \langle x_i, \theta \rangle \right] = \frac{r}{n} \mathbb{E} \left[\left\| \sum_{i=1}^{n} \varepsilon_i x_i \right\|_\ast \right].
\]

This is true for any norm. Moreover, the dual norm for the \(\ell_2 \)-norm is \(\ell_2 \), while the dual norm for the \(\ell_1 \)-norm is \(\ell_\infty \).

(a) We have by Jensen’s inequality that for any \(x_1, \ldots, x_n \in \mathbb{R}^d \),

\[
\mathbb{E} \left[\left\| \sum_{i=1}^{n} \varepsilon_i x_i \right\|_2^2 \right] \leq \mathbb{E} \left[\left\| \sum_{i=1}^{n} \varepsilon_i x_i \right\|_2^2 \right] = \sum_{i=1}^{n} \| x_i \|_2^2,
\]

by the independence of the random signs \(\varepsilon_i \). Thus \(R_n(F \mid x_{1:n}) \leq r n^{-1} \sqrt{\sum_{i=1}^{n} \| x_i \|_2^2} \leq \frac{M}{\sqrt{n}} \), where we have used that \(\| x_i \|_2 \leq M \). So \(R_n(F) \leq \frac{Mr}{\sqrt{n}} \) certainly.

(b) Conditional on \(x_1, \ldots, x_n \), we must consider

\[
R_n(F \mid x_{1:n}) = \mathbb{E} \left[\left\| \sum_{i=1}^{n} \varepsilon_i x_i \right\|_\infty \right].
\]

Let \(x_{i,j} \) denote the \(j \)th coordinate of \(x_i \in \mathbb{R}^d \). Each coordinate \(j \in \{1, \ldots, d\} \) of the vector \(\sum_{i=1}^{n} \varepsilon_i x_i \) is a \(\sum_{i=1}^{n} x_{i,j}^2 \)-sub-Gaussian random variable with mean zero, because \(\varepsilon_i \in \{-1,1\} \) are independent signs. (Similarly, \(-\sum_{i=1}^{n} \varepsilon_i x_i \) has \(\sum_{i=1}^{n} x_{i,j}^2 \)-sub-Gaussian coordinates.) Thus, using the first homework (that maxima of sub-Gaussians have small expectations), we have

\[
\mathbb{E} \left[\max_{j \leq d} \left\{ \sum_{i=1}^{n} \varepsilon_i x_{i,j}, -\sum_{i=1}^{n} \varepsilon_i x_{i,j} \right\} \right] \leq \sqrt{\log(2d)} \max_{j \leq d} \sqrt{\sum_{i=1}^{n} x_{i,j}^2} \leq M \sqrt{n \log(2d)}.
\]

In particular, we find that \(R_n(F) \leq \frac{Mr \sqrt{\log(2d)}}{\sqrt{n}} \).

\[\square \]

Answer to 7.4:

(a) Yes. Intuitively, it will pick \(\hat{\theta}_n \) such that (roughly) \(\langle \hat{\theta}, X_i \rangle Y_i > 0 \) for most \(i \).

(b) Let \(F = \{ f(x) = \langle \theta, x \rangle \mid \| \theta \|_2 \leq r \} \), and then by the contraction inequality, we have that

\[
R_n(\{ m_\theta \}_{\theta \in \Theta}) = R_n(\phi \circ F) \leq R_n(F) \leq \frac{Mr}{\sqrt{n}},
\]

1
where we have used Q4. Now, we note that
\[
\sup_{\theta \in \Theta, x \in \mathcal{X}, y \in \{-1,1\}} |\phi(y^\top x) - \phi(0)| \leq \sup_{\theta \in \Theta, x \in \mathcal{X}, y \in \{-1,1\}} |y^\top x| = Mr.
\]
Now we use Q3, which thus implies that
\[
\mathbb{P}\left(\sup_{\theta \in \Theta} |P_n m_\theta - P m_\theta| \geq 2R_n(F) + t\right) \leq 2 \exp(-cnM^2 r^2 t^2)
\]
for a numerical constant \(c\). In particular, taking
\[
t = \frac{Mr}{\sqrt{cn} \log \frac{1}{\delta}}
\]
yields
\[
\mathbb{P}\left(\sup_{\theta \in \Theta} |P_n m_\theta - P m_\theta| \geq \frac{Mr}{\sqrt{n}} \left(2 + C \log^2 \frac{1}{\delta}\right)\right) \leq \delta,
\]
where \(C\) is a numerical constant. This is evidently independent of the dimension, making it much sharper than Question [7.1], which scaled with dimension \(d\).

(c) We apply a completely parallel derivation to find that
\[
\mathbb{P}\left(\sup_{\theta \in \Theta} |P_n m_\theta - P m_\theta| \geq \frac{2Mr \sqrt{\log(2d)}}{\sqrt{n}} + t\right) \leq \exp(-cnM^2 r^2 t^2).
\]
So we may take
\[
\epsilon_n(\delta, d, r, M) = c \frac{Mr}{\sqrt{n}} \left[\sqrt{\log(2d)} + \sqrt{\log \frac{1}{\delta}}\right]
\]
to achieve the result. Again, this scales only logarithmically in the dimension, which is substantially sharper than the results of Question [7.1].

\[\square\]

Answer to [7.5]:

(a) It is clear that for any \(f(x) = 1 \{x \leq t\}\) and \(g(x) = 1 \{g(x) \leq t'\}\), where \(t' \geq t\), we have \(\int (f - g)^2 dP = \int 1 \{t < x \leq t'\} dP(x) = P(t < X \leq t')\). So w.l.o.g. we take \(\epsilon < 1\). Fix an arbitrary distribution \(P\) with cdf \(F(t) = P(X \leq t)\), let \(K(\epsilon) = [1/\epsilon] - 1\), and for \(k = 1, 2, \ldots, [1/\epsilon] - 1\), set
\[
t_k := F^{-1}(k\epsilon) = \inf \{t : F(t) \geq k\epsilon\} = \inf \{t : P(X \leq t) \geq k\epsilon\}.
\]
Note that for distributions with point masses, we may have \(t_k = t_{k+1}\) for some \(k\). We have that
\[
k\epsilon \leq P(X \leq t_k) \quad \text{and} \quad P(X < t_k) \leq k\epsilon
\]
by the right-continuity of the CDF (i.e. \(t \mapsto P(X \leq t)\) is right-continuous). Now, define the collection of functions \(f_{k,\leq}(x) = 1 \{x \leq t_k\}\) and \(f_{k,<}(x) = 1 \{x < t_k\}\), of which there are evidently \(2K(\epsilon)\). Then for any \(t \in \mathbb{R}\), we have that either (i) \(t < t_1\), (ii) \(t > t_{K(\epsilon)}\), (iii) there exists \(k \in \{1, \ldots, K(\epsilon)\}\) such that \(t_{k-1} < t < t_k\), or (iv) we have \(t = t_k\) for some \(k \in \{1, \ldots, K(\epsilon)\}\). In case (i), we have
\[
\int (f - f_{1,<})^2 dP = \int 1 \{t \leq x < t_1\} dP(x) \leq P(X < t_1) \leq \epsilon.
\]
In case (ii), we similarly have \(\int (f - f_{k(\epsilon), \leq})^2 dP \leq P(X > t_{K(\epsilon)}) \leq \epsilon. \) In case (iii), we have

\[
\int (f - f_{k-1, \leq})^2 dP = \int 1 \{t_{k-1} < x < t\} dP(x) \leq \int 1 \{t_{k-1} < x < t_k\} dP(x) = P(t_{k-1} < X < t_k) = P(X < t_k) - P(X \leq t_{k-1}) \leq \epsilon.
\]

Finally, in case (iv) we certainly have \(\int (f - f_{k, \leq})^2 dP = 0. \) That is, our collection \(\{f_{k, \leq}, f_{k, \leq}\}_{k \leq K(\epsilon)} \) satisfies

\[
\min_k \min \left\{ \|f - f_{k, \leq}\|_{L_2(P)}, \|f - f_{k, \leq}\|_{L_2(P)} \right\} \leq \sqrt{\epsilon}.
\]

Replacing \(\epsilon \) with \(\epsilon^2 \), we obtain the covering number bound

\[
N(F, L_2(P), \epsilon) \leq 2 \left[\frac{1}{\epsilon^2} \right] - 2 \text{ for } \epsilon < 1.
\]

Taking logarithms gives the desired result.

(b) We will apply Dudley’s entropy integral. First, we note that for any two functions \(f, g : \mathbb{R} \to \mathbb{R} \), we have that for a fixed collection \(x_1, \ldots, x_n \in \mathbb{R} \) and independent random signs \(\varepsilon_i \in \{-1, 1\} \),

\[
E \left[\exp \left(\lambda \sum_{i=1}^{n} \varepsilon_i (f(x_i) - g(x_i)) \right) \right] \leq \exp \left(\frac{\lambda^2}{2} \sum_{i=1}^{n} (f(x_i) - g(x_i))^2 \right).
\]

Thus for a fixed sample \(X_1 = x_1, \ldots, X_n = x_n \), the process \(\sum_{i=1}^{n} \varepsilon_i f(x_i) \) is \(n \|\cdot\|_{L_2(P_n)}^2 \)-sub-Gaussian, or, written differently, \(n^{-\frac{1}{2}} \sum_{i=1}^{n} \varepsilon_i f(x_i) \) is a \(\|\cdot\|_{L_2(P_n)}^2 \)-sub-Gaussian process. In particular, conditional on \(X_1, \ldots, X_n \), Dudley’s entropy integral implies

\[
E \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i f(X_i) \mid X \right] \leq \frac{C}{\sqrt{n}} \int_{0}^{1} \sqrt{\log N(\mathcal{F}, L_2(P_n), \epsilon)} d\epsilon,
\]

where \(C < \infty \) is a numerical constant. Now we use the answer of part (a), which shows that we have the further upper bound (for a different constant \(C \))

\[
E \left[\sup_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i f(X_i) \mid X \right] \leq \frac{C}{\sqrt{n}} \int_{0}^{1} \sqrt{\log(1 + \epsilon^{-1})} d\epsilon \leq \frac{C}{\sqrt{n}} \int_{0}^{1} \epsilon^{-\frac{1}{2}} d\epsilon = \frac{2C}{\sqrt{n}}.
\]

The same bound holds for suprema over \(-f \) for \(f \in \mathcal{F} \), and so \(E[R_n(\mathcal{F} \mid X_{1:n})] \leq C/\sqrt{n} \) for some absolute constant \(C < \infty \).

Alternative solution. We can also show this bound directly without using chaining. Notice that as we vary \(t \in \mathbb{R} \), the tuple \((1 \{x_1 \leq t\}, \ldots, 1 \{x_n \leq t\}) \) can take on only \(n + 1 \) values. If we sort \(x_i \) as \(x_{(1)} \leq \cdots \leq x_{(n)} \), we have \((\varepsilon_{(1)}, \ldots, \varepsilon_{(n)}) \overset{d}{=} (\varepsilon_1, \ldots, \varepsilon_n) \). So we get

\[
\sup_{t \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_i 1 \{x_i \leq t\} \right| = \sup_{t \in \mathbb{R}} \left| \frac{1}{n} \sum_{i=1}^{n} \varepsilon_{(i)} 1 \{x_{(i)} \leq t\} \right| = \frac{1}{n} \max_{1 \leq i \leq n} |S_n|,
\]

where \(S_n \) is a symmetric random walk on \(\mathbb{Z} \). By the reflection principle, we have that for any \(t \in \mathbb{Z}_{>0}, \)

\[
\mathbb{P} \left(\max_{1 \leq i \leq n} S_n \geq t \right) \leq 2\mathbb{P}(S_n \geq t) \quad \text{and} \quad \mathbb{P} \left(\max_{1 \leq i \leq n} \{-S_n\} \leq -t \right) \leq 2\mathbb{P}(S_n \leq -t),
\]
giving us $\mathbb{P}(\max_{1 \leq i \leq n} |S_i| \geq t) \leq 4 \mathbb{P}(|S_n| \geq t)$. Applying the identity $\mathbb{E}[X] = \sum_{n=1}^{\infty} \mathbb{P}(X \geq n)$ for integer valued r.v. $X \geq 0$, we get

$$\mathbb{E}\left[\max_{1 \leq i \leq n} |S_i|\right] \leq 4 \mathbb{E}[|S_n|] \leq 4 \sqrt{\mathbb{E}\left[\left(\sum_{i=1}^{n} \varepsilon_i\right)^2\right]} = 4\sqrt{n}.$$

So the desired bound holds with $C = 4$.

(c) This is just \sqrt{n} part (c).

\[\square \]

\textbf{Answer to 1.11} \quad \text{We have}

$$0 \leq (1 - \theta)\mathbb{E}[X] = \mathbb{E}[X - \theta \mathbb{E}[X]] \leq \mathbb{E}\{X \geq \theta \mathbb{E}[X]\} \leq \mathbb{E}\{X \geq \theta \mathbb{E}[X]\} (X - \theta \mathbb{E}[X])$$

$$\leq \mathbb{P}(X \geq \theta \mathbb{E}[X]) \frac{1}{2} \mathbb{E}[(X - \theta \mathbb{E}[X])^2]^2,$$

while

$$\mathbb{E}[(X - \theta \mathbb{E}[X])^2] = \mathbb{E}[(X - \mathbb{E}[X] + (1 - \theta)\mathbb{E}[X])] = \text{Var}(X) + (1 - \theta)^2 \mathbb{E}[X]^2.$$

Thus

$$\mathbb{P}(X \geq \theta \mathbb{E}[X]) \geq \frac{(1 - \theta)^2 \mathbb{E}[X]^2}{\text{Var}(X) + (1 - \theta)^2 \mathbb{E}[X]^2} = (1 - \theta)^2 \frac{\mathbb{E}[X]^2}{\mathbb{E}[X]^2} = \theta(2 - \theta) \mathbb{E}[X]^2.$$

\[\square \]

\textbf{Answer to 7.8}.

(a) We use the Paley-Zygmund inequality (Question 1.11), which states that

$$\mathbb{P}(\langle v, X \rangle \geq \theta \mathbb{E}[\langle v, X \rangle]) \geq (1 - \theta)^2 \frac{\mathbb{E}[\langle v, X \rangle]^2}{\langle v^T \Sigma v - \theta(2 - \theta) \mathbb{E}[\langle v, X \rangle]^2\rangle}.$$

Using that $\mathbb{E}[\langle v, X \rangle] \geq \kappa \sqrt{v^T \Sigma v}$ for a constant $\kappa > 0$ and setting $\theta = \frac{1}{2}$ above, we have

$$\mathbb{P}(\langle v, X \rangle \geq \frac{\kappa}{2} \|v\|_\Sigma) \geq \frac{1}{4} \frac{\kappa^2 v^T \Sigma v}{v^T \Sigma v - (3/4) \kappa v^T \Sigma v} = \frac{\kappa^2}{4 - 3\kappa}.$$

(b) Let $\|v\|^2_\Sigma = v^T \Sigma v$ for shorthand, and recall that $\lambda_{\min}(\Sigma) = \inf_{v \in \mathbb{S}^{d-1}} \sqrt{v^T \Sigma v}$. The set of half-planes in \mathbb{R}^d has VC-dimension at most $d + 1$, while $\|v\|_\Sigma \geq \lambda_{\min}$ for all $v \in \mathbb{S}^{d-1}$. Thus if we define the random variable

$$B_i(v) = 1\left\{\langle v, X_i \rangle \geq \frac{\kappa}{2} \lambda_{\min}\right\} + 1\left\{\langle v, X_i \rangle \leq -\frac{\kappa}{2} \lambda_{\min}\right\},$$

then

$$\mathbb{E}[B_i(v)] \geq \frac{\kappa^2}{4 - 3\kappa}$$

by the first part of the question. Using the VC-dimension bounds from class, for a numerical constant C, we have

$$\mathbb{P}\left(\exists v \in \mathbb{S}^{d-1} \text{ s.t. } \frac{1}{n} \sum_{i=1}^{n} B_i(v) - \mathbb{E}[B_i(v)] \leq -C \sqrt{\frac{d}{n}} - t\right) \leq e^{-2nt^2}.$$
Written differently,

\[\mathbb{P} \left(\exists v \in \mathbb{S}^{d-1} \text{ s.t. } \frac{1}{n} \text{card}(\{ i \in [n] \mid \langle v, X_i \rangle^2 \geq \kappa^2 \lambda_{\min}(\Sigma)/4 \}) \leq \frac{\kappa^2}{4 - 3\kappa} - C \sqrt{\frac{d}{n}} - t \right) \leq e^{-2n\kappa}. \]

On the complement of the event within the probability above, we have

\[v^T \bar{\Sigma}_n v \geq \left[\frac{\kappa^2}{4 - 3\kappa} - C \sqrt{\frac{d}{n}} - t \right]_+ \cdot \frac{\kappa^2}{4} \lambda_{\min}(\Sigma) \]

for all \(v \in \mathbb{R}^d \).