Stats300b Problem Set 5
Due: Thursday, February 15 at beginning of class

Exercises 6.1, 6.2, 7.1.

Answer to 6.1:
(a) We have \(\text{Var}(Y) = \inf_t \mathbb{E}[(Y - t)^2] \leq \mathbb{E}[(Y - \frac{b+a}{2})^2] \leq \max\{(b - \frac{b+a}{2})^2, (a - \frac{b+a}{2})^2\} = \frac{(b-a)^2}{4} \).
(b) Because we may pass derivatives through expectations, we have \(\varphi'(\lambda) = \frac{\mathbb{E}[xe^{\lambda X}]}{\mathbb{E}[e^{\lambda X}]} = \int x \frac{e^{\lambda x}}{\mathbb{E}[e^{\lambda X}]} dP(x) = \mathbb{E}_{Q_\lambda}[X] \).
Taking second derivatives, we have \(\varphi''(X) = \frac{\mathbb{E}[X^2e^{\lambda X}]}{\mathbb{E}[e^{\lambda X}]} - \frac{\mathbb{E}[Xe^{\lambda X}]^2}{\mathbb{E}[e^{\lambda X}]^2} = \mathbb{E}_{Q_\lambda}[X^2] - \mathbb{E}_{Q_\lambda}[X]^2 = \text{Var}_{Q_\lambda}(X) \) as desired.
(c) We have \(\varphi'(0) = 0 \), and we use that \(X \) is bounded under all distributions \(Q_\lambda \) to find that \(\varphi''(\lambda) \leq \frac{(b-a)^2}{4} \). The integral equation
\[
\varphi(\lambda) = \varphi(0) + \varphi'(0)\lambda + \frac{1}{2} \varphi''(\tilde{\lambda})\lambda^2
\]
for some \(\tilde{\lambda} \in [0, \lambda] \) by Taylor’s theorem coupled with \(\varphi(0) = \varphi'(0) = 0 \) then yields \(\varphi(\lambda) \leq \frac{(b-a)^2}{8} \lambda^2 \) as desired.

Answer to 6.2: The first inequality of the problem is known as the Marcinkiewicz-Zygmund inequality, and it is known to be sharp in the sense that there is another constant \(C'_k \) such that
\[
C'_k \mathbb{E} \left[\left(\sum_{i=1}^n X_i^2 \right)^{\frac{k}{2}} \right] \leq \mathbb{E}[|S_n|^k].
\]
Let us turn to the proof.

(a) Without loss of generality, let \(\sigma = 1 \). Let \(\varepsilon_i \in \{\pm 1\} \) be i.i.d. Rademacher variables and let \(S'_n = \sum_{i=1}^n X_i' \) for \(X_i' \) independent copies of \(X_i \). Then by a standard symmetrization argument, we have
\[
\mathbb{E}[|S_n|^k] = \mathbb{E}[|S_n - \mathbb{E}[S'_n]|^k] \leq \mathbb{E}[|S_n - S'_n|^k]
\]
\[
= \mathbb{E} \left[\left(\sum_{i=1}^n \varepsilon_i(X_i - X'_i) \right)^k \right] = 2^k \mathbb{E} \left[\left(\frac{1}{2} \sum_{i=1}^n \varepsilon_i X_i - \frac{1}{2} \sum_{i=1}^n \varepsilon_i X'_i \right)^k \right]
\]
\[
\leq 2^k \mathbb{E} \left[\left(\sum_{i=1}^n \varepsilon_i X'_i \right)^k \right],
\]
where the final inequality is a consequence of the convexity of \(x \mapsto |x|^k \) for \(k \geq 1 \). Let
\[S_n^ε = \sum_{i=1}^n ε_i X_i \]
be the symmetrized version of \(S_n \), and by conditioning on \(X = (X_1, \ldots, X_n) \),
which has \(\ell_2 \)-norm \(\|X\| = (\sum_{i=1}^n X_i^2)^{\frac{1}{2}} \), we have
\[
2^{-k} \mathbb{E}[|S_n^ε|^k] \leq \mathbb{E}[|S_n^ε|^k] = \mathbb{E} \left[\mathbb{E}[|S_n^ε|^k | X] \right] = \mathbb{E} \left[\int_0^\infty \mathbb{P}(|S_n^ε|^k \geq t | X) dt \right],
\]
where we have used that \(\mathbb{E}[Z] = \int_0^\infty \mathbb{P}(Z \geq t) dt \) for all nonnegative random variables \(Z \).
Conditional on \(X \), we have that \(S_n^ε \) is \(\|X\|^2 \)-sub-Gaussian, because \(ε_i X_i \in [-X_i, X_i] \). Thus
Hoeffding’s inequality implies
\[
\mathbb{P}(|S_n^ε| \geq t^{1/k} | X) \leq 2 \exp \left(-\frac{t^{2/k}}{2 \|X\|^2} \right).
\]
For any constant \(C \) we have by the change of variables \(u = t^{2/k}/2C \), or \(t = (2C u)^{k/2} \) and
\[
dt = k 2^{\frac{k}{2} - 1} C^\frac{k}{2} u^{\frac{k}{2} - 1} du,
\]
that
\[
\int_0^\infty \exp \left(-\frac{t^{2/k}}{2C} \right) dt = k 2^{\frac{k}{2} - 1} C^\frac{k}{2} \int_0^\infty u^{\frac{k}{2} - 1} e^{-u} du = k \Gamma(k/2) 2^{\frac{k}{2} - 1} C^\frac{k}{2}.
\]
In particular, we find that
\[
\mathbb{E} \left[\int_0^\infty \mathbb{P}(|S_n^ε| \geq t^{1/k} | X) dt \right] \leq 2^k k \Gamma \left(\frac{k}{2} \right) \mathbb{E} \left[\left(\sum_{i=1}^n X_i^2 \right)^{\frac{k}{2}} \right].
\]
Setting \(C_k = 2^{\frac{3k}{2}} k \Gamma \left(\frac{k}{2} \right) \) gives the result. We can also approximate the growth of \(C_k \) once we note that \(\Gamma(k/2) \leq \sqrt{k} \) and that
\[
(k!)^{\frac{1}{k}} = \exp \left(\frac{1}{k} \sum_{i=1}^k \log i \right) = \exp \left(\frac{1}{k} \int_1^k \log t dt + O(1) \right) = O(1) \cdot \exp \left(\frac{1}{k} \log k \log k - k \right)
\]
so that \((k!)^{\frac{1}{k}} = O(1) \exp(\frac{1}{k} \log k) = \sqrt{k} \). Thus \(\mathbb{E}[|S_n|^k]^{\frac{1}{2}} \leq O(1) \sqrt{k} \mathbb{E}[\left(\sum_{i=1}^n X_i^2 \right)^{\frac{k}{2}}] \).
Now we turn to the consequences.

(b) We use Jensen’s inequality:
\[
\mathbb{E} \left[\left(\sum_{i=1}^n X_i^2 \right)^{\frac{k}{2}} \right] = n^{\frac{k}{2}} \mathbb{E} \left[\left(n^{-\frac{1}{2}} \sum_{i=1}^n X_i^2 \right)^{\frac{k}{2}} \right] \leq n^{\frac{k}{2}} \frac{1}{n} \sum_{i=1}^n \mathbb{E} [|X_i|^k].
\]

(c) By Markov’s inequality,
\[
\mathbb{P}(|S_n| \geq nt) \leq \frac{\mathbb{E}[|S_n|^k]}{nt^k} \leq C_k n^{\frac{k}{2}} \sigma^k = C_k \left(\frac{\sigma^2}{nt^2} \right)^{\frac{k}{2}}.
\]
Ignoring the factor \(C_k \), when \(k = 2 \) we recover Chebyshev’s inequality and otherwise have something substantially tighter.
We have that

\[|m_\theta(x, y) - m_{\theta'}(x, y)| \leq |\langle \theta, x \rangle - \langle \theta', x \rangle| \leq \|\theta - \theta'\| \|x\|_s. \]

The covering numbers \(N(\Theta, \|\cdot\|, \epsilon) \) are finite for all \(\epsilon > 0 \), so letting \(\{\theta^i\}_{i=1}^N \) denote an \(\epsilon \)-cover of \(\Theta \), we have that the pairs \(\{\ell_i, u_i\} \) with \(\ell_i(x, y) = m_{\theta^i}(x, y) - \epsilon \|x\|_s \) and \(u_i(x, y) = m_{\theta^i}(x, y) + \epsilon \|x\|_s \) form a 2\epsilon-cover of \(\{m_\theta(\cdot, \cdot) \mid \theta \in \Theta\} \) in the \(L_1(P) \) norm. Applying (for example) van der Vaart [1] Theorem 19.4 gives the result.

We have that

\[
\log(1 + e^{-Mr}) \leq \log(1 + e^{-\|x\|_s \|\theta\|}) \leq \log(1 + e^{-yx^\top})
\]

so that

\[
m_\theta(x, y) \leq \log(1 + e^{-\|x\|_s \|\theta\|}) \leq \log(1 + e^{Mr}),
\]

so that \(m_\theta(x, y) - \log(2) \in [-Mr, Mr] \). Thus, for any fixed \(\theta \) and all \(t \geq 0 \), we have by Hoeffding’s inequality that

\[
\mathbb{P}(|P_n m_\theta(X, Y) - M(\theta)| \geq t) \leq 2 \exp\left(-\frac{nt^2}{2M^2r^2}\right). \tag{1}
\]

Now, using the result on volumes in class, we know that for any \(\epsilon > 0 \) the covering numbers of \(\Theta = \{\theta \in \mathbb{R}^d \mid \|\theta\| \leq r\} \) satisfy \(\log N(\Theta, \|\cdot\|, \epsilon) \leq d \log(1 + 2r \epsilon) \). Let \(\epsilon > 0 \) and \(\{\theta^i\}_{i=1}^N, N = N(\Theta, \|\cdot\|, \epsilon) \) be a minimal \(\epsilon \)-cover of \(\Theta \). Then letting \(\pi(\theta) = \text{argmin}_{\theta^i} \|\theta - \theta^i\| \), we have

\[
\sup_{\theta \in \Theta} |P_n m_\theta - M(\theta)| \leq \sup_{\theta \in \Theta} |P_n m_\theta - P_n m_{\pi(\theta)}| + \max_i |P_n m_{\theta^i} - P_{m_{\theta^i}}| + \sup_{\theta \in \Theta} |P_{m_{\pi(\theta)}} - M(\theta)|
\]

\[
\leq 2M\epsilon + \max_{1 \leq N(\epsilon)} |P_n m_{\theta^i} - P_{m_{\theta^i}}|,
\]

where we have used that \(m_\theta(x, y) \) is \(\|x\|_s \)-Lipschitz in \(\theta \) and \(\|x\|_s \leq M \). Thus we have for any \(\epsilon > 0 \) that for a minimal \(\epsilon \)-cover \(\{\theta^i\}_{i=1}^{N(\epsilon)} \) of \(\Theta \), we have

\[
\mathbb{P}\left(\sup_{\theta \in \Theta} |P_n m_\theta - P_{m_\theta}| \geq 2M\epsilon + t\right) \leq \mathbb{P}\left(\max_{i \leq N(\epsilon)} |P_n m_{\theta^i} - P_{m_{\theta^i}}| \geq t\right)
\]

\[
\leq N(\Theta, \|\cdot\|, \epsilon) \max_{i \leq N(\epsilon)} \mathbb{P}(\|P_n m_{\theta^i} - P_{m_{\theta^i}}| \geq t)
\]

\[
\leq 2 \exp\left(d \log\left(1 + \frac{2r}{\epsilon}\right) - \frac{nt^2}{2M^2r^2}\right),
\]

where we have used a union bound, our covering number bound, and Hoeffding’s inequality [1]. If we choose

\[
t^2 = \frac{2M^2r^2}{n} \left[\log \frac{2}{\delta} + d \log\left(1 + \frac{2r}{\epsilon}\right)\right],
\]

we have

\[
\mathbb{P}\left(\sup_{\theta \in \Theta} |P_n m_\theta - P_{m_\theta}| \geq 2M\epsilon + t\right) \leq \delta,
\]

and setting \(\epsilon = r/n \) gives the desired result with

\[
\epsilon_n(\delta) = \frac{2Mr}{n} + \sqrt{\frac{2Mr}{n} \sqrt{\log \frac{2}{\delta} + 2 \log(1 + n)}}.
\]
References