Stats300b Problem Set 2
Due: Thursday, January 25 at beginning of class

Answer to 2.1.

(a) We show the result for \(x > x_0 \) for simplicity. Following the hint, we write

\[x = \frac{x - x_0}{y - x_0} y + \frac{y - x}{y - x_0} x_0, \]

which gives

\[f(x) \leq \frac{x - x_0}{y - x_0} f(y) + \frac{y - x}{y - x_0} f(x_0) = \frac{x - x_0}{y - x_0} f(y) + f(x_0) - \frac{x - x_0}{y - x_0} f(x_0). \]

Rearranging, we obtain

\[f(x) - f(x_0) \leq \frac{x - x_0}{y - x_0} (f(y) - f(x_0)), \]

which is equivalent to \(s(x) \leq s(y) \) because \(x > x_0 \). The case when \(y \leq x < x_0 \) is completely similar.

(b) First, let \(0 < t_1 \leq t_2 \). Then

\[\frac{f(x + t_1 v) - f(x)}{t_1} = \frac{f(x + t_2 (t_1/t_2) v) - f(x)}{t_1} = \frac{f((1 - t_1/t_2) x + (t_1/t_2) (x + t_2 v)) - f(x)}{t_1} \leq \frac{(1 - t_1/t_2) f(x) + (t_1/t_2) f(x + t_2 v) - f(x)}{t_1} = \frac{f(x + t_2 v) - f(x)}{t_2}. \]

That is, \(t \mapsto \frac{f(x + tv) - f(x)}{t} \) is non-decreasing, and so the limit as \(t \downarrow 0 \) of the quantity exists and is the infimum.

(c) Because of part (a), we know that the slope function is increasing, and thus \(f(x - t) - f(x) \leq f(x + t) - f(x) \), so that \(f'(x; -1) \leq f'(x; 1) \).

(d) We have that \(f(x + t) \geq f(x) + tf'(x; 1) \) for all \(t \geq 0 \) by definition of the directional derivative, and similarly, \(f(x - t) \geq f(x) + tf'(x; -1) \) by an identical calculation. If \(y \geq x \), we obtain

\[f(y) \geq f(x) + (y - x) f'(x; 1) \geq f(x) + (y - x) f'(x; -1) \]

by the first inequality, because \(f'(x; 1) \geq f'(x; -1) \) and \(y - x \). If \(y \leq x \), we set \(t = x - y \) in the second quantity to obtain

\[f(y) \geq f(x) + (y - x) f'(x; -1) \geq f(x) + (y - x) f'(x; 1) \]

because \(y - x \leq 0 \). As \(g \in [f'(x; -1), f'(x; 1)] \), we have the result.

(e) First, we argue that if \(f \) is strictly convex at the point \(x \), then for any \(g \in \partial f(x) \), either

i. \(f(y) > f(x) + g(y - x) \) for all \(y > x \)

ii. \(f(y) > f(x) + g(y - x) \) for all \(y < x \)
Indeed, assume neither of these is the case, that is, we have for some \(y_0 < x < y_1 \) that \(f(y_i) = f(x) + g(y_i - x) \) for \(i = 0, 1 \). Define the slope function

\[
s(y) := \frac{f(y) - f(x)}{y - x}.
\]

Then we must have \(s(y_i) = f'(x; 1) = g \) by the criterion of increasing slopes and part (b), and \(s(y_0) = -f'(x; -1) = g \) by the same argument, so \(f'(x; 1) = -f'(x; -1) = g \). Moreover, we have \(s(y) = f'(x; 1) \) for all \(y \in (x, y_1) \) and \(s(y) = -f'(x; -1) \) for all \(y \in (y_0, x) \). In particular, we have that \(f \) is linear on the intervals \([y_0, x] \) and \([x, y_1] \), with slope \(g \), so that \(f(y) = f(x) + g(y - x) \) for all \(y \in [y_0, y_1] \). Clearly this function is not strictly convex at \(x \), which is a contradiction.

Now we prove the assertion of the question. Let \(\mathbb{E}[X] \in \text{int dom } f \). Taking \(g \in \partial f(x) \) and assuming \(\mathbb{P}(X = \mathbb{E}[X]) < 1 \), there must be some \(\epsilon > 0 \) such that \(\mathbb{P}(|X - \mathbb{E}[X]| \geq \epsilon) > 0 \), and so

\[
f(X) > f(\mathbb{E}[X]) + g(X - \mathbb{E}[X])
\]

with positive probability. Thus \(\mathbb{E}[f(X)] > f(\mathbb{E}[X]) + g(\mathbb{E}[X] - \mathbb{E}[X]) = f(\mathbb{E}[X]) \). Conversely, if \(X = \mathbb{E}[X] \) with probability 1, then clearly \(f(\mathbb{E}[X]) = \mathbb{E}[f(X)] \). Lastly, if \(\mathbb{E}[X] \notin \text{int dom } f \), then if \(X \neq \mathbb{E}[X] \) with positive probability, we have \(X \notin \text{dom } f \) with positive probability and \(\mathbb{E}[f(X)] = \infty \).

\[\square\]

Answer to 2.2
We use Jensen’s inequality is as follows: if \(h : \mathbb{R} \to \mathbb{R} \cup \{+\infty\} \) is a convex function and \(X \) a random vector, then \(\mathbb{E}[h(X)] \geq h(\mathbb{E}[X]) \). If \(h \) is strictly convex at \(\mathbb{E}[X] \), then the inequality is strict unless \(X = \mathbb{E}[X] \) with probability 1.

We have that \(t \mapsto -\log t \) is a strictly convex function, so that for any random variable \(Y \geq 0 \) we have \(\mathbb{E}[-\log Y] \geq -\log \mathbb{E}[Y] \) with equality if and only if \(Y = \mathbb{E}[Y] \) with probability 1. Define the random variable \(L(X) = \frac{q(x)}{p(X)} \), which exists and is finite \(P \)-a.s. Then \(\mathbb{E}_P[L(X)] = \int q(x) d\mu(x) = 1 \), and \(D_1(P|Q) = \mathbb{E}_P[-\log L(X)] \geq -\log \mathbb{E}_P[L(X)] = 0 \), with strict inequality unless \(L(X) = 1 \) with \(P \)-probability 1, or \(P = Q \).

\[\square\]

Answer to 2.3:
(a) Following the hint, we let \(\lambda \in [0, 1] \) and define the conjugate pair \(p = 1/\lambda \) and \(q = 1/(1 - \lambda) \). We then write

\[
A(\lambda \theta_0 + (1 - \lambda) \theta_1) = \log \int \exp (\lambda \langle \theta_0, T(x) \rangle + (1 - \lambda) \langle \theta_1, T(x) \rangle) \, d\mu(x)
\]

\[
= \log \int (e^{\langle \theta_0, T(x) \rangle})^{\lambda/p} (e^{\langle \theta_1, T(x) \rangle})^{1/q} \, d\mu(x)
\]

\[
\leq \log \left(\int e^{\langle \theta_0, T(x) \rangle} \, d\mu(x) \right)^{\lambda/p} \left(\int e^{\langle \theta_1, T(x) \rangle} \, d\mu(x) \right)^{1/q}
\]

by Hölder’s inequality. Noting that \(\log ab = \log a + \log b \) we obtain

\[
A(\lambda \theta_0 + (1 - \lambda) \theta_1) \leq \frac{1}{p} \log \int e^{\langle \theta_0, T(x) \rangle} \, d\mu(x) + \frac{1}{q} \log \int e^{\langle \theta_1, T(x) \rangle} \, d\mu(x),
\]

which is our desired result.
(b) We compute the KL-divergence of P_{θ_0} and P_{θ_1}, which is

$$D_{\text{kl}}(P_{\theta_0} \| P_{\theta_1}) = A(\theta_1) - A(\theta_0) - (\nabla A(\theta_0), \theta_1 - \theta_0).$$

We know that for some $\bar{\theta} \in [\theta_0, \theta_1]$, we have

$$A(\theta_1) = A(\theta_0) + (\nabla A(\theta_0), \theta_1 - \theta_0) + \frac{1}{2} (\theta_1 - \theta_0)^T \nabla^2 A(\bar{\theta})(\theta_1 - \theta_0),$$

by a Taylor expansion, and the strict positivity of $\nabla^2 A(\theta)$ gives that $D_{\text{kl}}(P_{\theta_0} \| P_{\theta_1}) > 0$.

\[\Box\]

Answer to 2.5: We answer each part in turn.

(a) This is trivial: for any measure μ on X we have by convexity of ℓ that for any $t \in [0, 1],

$$\int \ell(t\theta + (1-t)\theta', x)d\mu(x) \leq \int t\ell(\theta, x)+(1-t)\ell(\theta', x)d\mu(x) = t \int \ell(\theta, x)d\mu(x) + (1-t)\ell(\theta', x)d\mu(x)$$

for any θ, θ'. Take μ to be either P or the empirical distribution on X_1, \ldots, X_n to get the result.

(b) Let \hat{P}_n denote the empirical distribution on X_1, \ldots, X_n, so that $\mathbb{E}_{\hat{P}_n}[f(X)] = \frac{1}{n} \sum_{i=1}^n f(X_i)$. We know that θ^* satisfies $\nabla R(\theta^*) = 0$, so that

$$\mathbb{E}[\nabla \ell(\theta^*, X)] = 0.$$

Thus, we have that

$$\sqrt{n} \mathbb{E}_{\hat{P}_n}[\nabla \ell(\theta^*, X)] \xrightarrow{d} \mathcal{N}(0, \Sigma) \quad \text{and} \quad \mathbb{E}_{\hat{P}_n}[\nabla \ell(\theta^*, X)] \xrightarrow{a.s.} 0$$

by the multivariate central limit theorem. Moreover, we have $\mathbb{E}[\nabla^2 \ell(\theta^*, X)] = \nabla^2 R(\theta^*) > 0$, and the SLLN implies that $\mathbb{E}_{\hat{P}_n}[\nabla^2 \ell(\theta^*, X)] \xrightarrow{a.s.} \nabla^2 R(\theta^*)$. Let $\lambda > 0$ be the minimal eigenvalue of $\nabla^2 R(\theta^*)$ so that $\nabla^2 R(\theta^*) \succeq \lambda I$. Then with probability 1, for all sufficiently large n we have $\mathbb{E}_{\hat{P}_n}[\nabla^2 \ell(\theta^*, X)] \geq \frac{3}{4} I$. Let $H = \mathbb{E}[H^2(X)] \frac{1}{2}$ be the expectation of H, and assume that N is large enough that $\frac{1}{n} \sum_{i=1}^n H^2(X_i) \leq 4H^2$ for all $n \geq N$ (again, this is possible by the SLLN). Then we have

$$\nabla^2 \hat{R}_n(\theta) \succeq \nabla^2 \hat{R}_n(\theta^*) - \|\nabla^2 \hat{R}_n(\theta^*) - \nabla^2 \hat{R}_n(\theta)\|_{\text{op}} I$$

$$\succeq \left(\frac{3\lambda}{4} - \|\theta - \theta^*\| \left(\frac{1}{n} \sum_{i=1}^n H(X_i) \right) \right) I$$

$$\succeq \left(\frac{3\lambda}{4} - 2H \|\theta - \theta^*\| \right) I,$$

so that for all θ such that $\|\theta - \theta^*\| \leq \frac{\lambda}{8H}$ we have $\nabla^2 \hat{R}_n(\theta) \succeq \frac{\lambda}{2} I$.

Now, applying the hint on convexity, we have

$$\hat{R}_n(\theta) \geq \hat{R}_n(\theta^*) + \nabla \hat{R}_n(\theta^*)^T (\theta - \theta^*) + \frac{\lambda}{4} \min\{\|\theta - \theta^*\|^2, \frac{\lambda}{8H} \|\theta - \theta^*\| \}$$
for all θ, or, a simpler condition, for some $c > 0$ we have

$$\hat{R}_n(\theta) \geq \hat{R}_n(\theta^*) + \nabla \hat{R}_n(\theta^*)^T (\theta - \theta^*) + c \min \left\{ \| \theta - \theta^* \|^2, \| \theta - \theta^* \| \right\}.$$

Let $\epsilon < c$ be otherwise arbitrary; we know that for sufficiently large n we also have $\| \nabla \hat{R}_n(\theta^*) \| \leq \epsilon$. Consequently, we find by the Cauchy-Schwartz inequality that

$$\hat{R}_n(\theta) \geq \hat{R}_n(\theta^*) - \epsilon \| \theta - \theta^* \| + c \min \{ \| \theta - \theta^* \|, \| \theta - \theta^* \|^2 \},$$

and $\| \theta - \theta^* \| > \sqrt{\epsilon/c}$ implies that

$$-\epsilon \| \theta^* - \theta \| + c \min \{ \| \theta^* - \theta \|, \| \theta^* - \theta \|^2 \} > (\sqrt{\epsilon/c} - \epsilon) \| \theta - \theta^* \| > 0,$$

or $\hat{R}_n(\theta) > \hat{R}_n(\theta^*)$. Thus we must have $\| \hat{\theta}_n - \theta^* \| \leq \sqrt{\epsilon/c}$ eventually, so $\hat{\theta}_n \xrightarrow{a.s.} \theta^*$.

For fun, the convexity result For completeness, we also show the result on convexity to keep our entire argument self-contained. Let f be convex and satisfy the conditions in the theorem. Then by a Taylor expansion, for any θ satisfying $\| \theta - \theta_0 \| \leq c$, we have for some $\tilde{\theta} \in [\theta, \theta_0]$ that

$$f(\theta) = f(\theta_0) + \langle \nabla f(\theta_0), \theta - \theta_0 \rangle + \frac{1}{2} (\theta - \theta_0)^T \nabla^2 f(\tilde{\theta}) (\theta - \theta_0) \geq f(\theta_0) + \langle \nabla f(\theta_0), \theta - \theta_0 \rangle + \frac{\lambda}{2} \| \theta - \theta_0 \|^2,$$

because $\| \tilde{\theta} - \theta_0 \| \leq c$. Now, suppose that $\| \theta - \theta_0 \| \geq c$. Let $t \in [0,1]$ be such that $\theta_t := t\theta + (1 - t)\theta_0$ satisfies $\| \theta_t - \theta_0 \| = c$, or $t = \frac{c}{\| \theta - \theta_0 \|}$. By convexity and the assumption of the question, we then obtain

$$tf(\theta) + (1 - t)f(\theta_0) \geq f(\theta_t) \geq f(\theta_0) + \langle \nabla f(\theta_0), \theta_t - \theta_0 \rangle + \frac{\lambda}{2} \| \theta_t - \theta_0 \|^2.$$

But of course, we have $\theta_t - \theta_0 = t(\theta - \theta_0)$, and so we have

$$tf(\theta) + (1 - t)f(\theta_0) \geq f(\theta_0) + t \langle \nabla f(\theta_0), \theta - \theta_0 \rangle + \frac{\lambda}{2} t^2 \| \theta - \theta_0 \|^2,$$

which, rearranged and dividing by $t = \frac{c}{\| \theta - \theta_0 \|} > 0$, yields

$$f(\theta) \geq f(\theta_0) + \langle \nabla f(\theta_0), \theta - \theta_0 \rangle + \frac{\lambda}{2} t \| \theta - \theta_0 \|^2 = f(\theta_0) + \langle \nabla f(\theta_0), \theta - \theta_0 \rangle + \frac{\lambda}{2} c \| \theta - \theta_0 \|.$$

This is our desired result, as we see that

$$f(\theta) \geq \begin{cases} f(\theta_0) + \langle \nabla f(\theta_0), \theta - \theta_0 \rangle + \frac{\lambda}{2} \| \theta - \theta_0 \|^2 & \text{if } \| \theta - \theta_0 \| \leq c \\ f(\theta_0) + \langle \nabla f(\theta_0), \theta - \theta_0 \rangle + \frac{c^2}{2} \| \theta - \theta_0 \| & \text{if } \| \theta - \theta_0 \| > c. \end{cases}$$

(c) We may assume w.l.o.g. that $\| \theta^* - \hat{\theta} \| \leq \epsilon$ for any ϵ, as we already have assumed that $\hat{\theta}_n - \theta^* \xrightarrow{P} 0$. Then by performing a Taylor expansion of $\nabla \hat{R}_n$ around θ^*, we have

$$0 = \nabla \hat{R}_n(\hat{\theta}_n) = \nabla \hat{R}_n(\theta^*) + \nabla^2 \hat{R}_n(\hat{\theta}_n)(\hat{\theta}_n - \theta^*)$$

$$= \nabla \hat{R}_n(\theta^*) + \nabla^2 \hat{R}_n(\theta^*)(\hat{\theta}_n - \theta^*) + (\nabla^2 \hat{R}_n(\hat{\theta}_n) - \nabla^2 \hat{R}_n(\theta^*)) (\hat{\theta}_n - \theta^*),$$

(1)
where $\tilde{\theta}_n$ lies on the segment between θ^* and $\hat{\theta}_n$. In particular, by the Lipschitz continuity assumption, we have

$$\left\| \nabla^2 \hat{R}_n(\tilde{\theta}_n) - \hat{R}_n(\theta^*) \right\|_{op} \leq \frac{1}{n} \sum_{i=1}^{n} H(X_i) \| \tilde{\theta}_n - \hat{\theta}_n \| \xrightarrow{p} 0,$$

because $\frac{1}{n} \sum_{i=1}^{n} H(X_i) \xrightarrow{a.s.} E[H(X)]$. In particular, rearranging the equality (1) we have

$$0 = \nabla \hat{R}_n(\theta^*) + (\nabla^2 \hat{R}_n(\theta^*) + o_P(1))(\hat{\theta}_n - \theta^*).$$

We have $\nabla^2 \hat{R}_n(\theta^*) + o_P(1) \xrightarrow{p} \nabla^2 R(\theta^*)$, and it is eventually invertible, so

$$\hat{\theta}_n - \theta^* = -\left(\nabla^2 \hat{R}_n(\theta^*) + o_P(1)\right)^{-1} \nabla \hat{R}_n(\theta^*).$$

Multiplying by \sqrt{n} and applying Slutsky’s theorem gives the result.

\qed