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The diffusion decision model allows detailed explanations of behavior in
two-choice discrimination tasks. In this article, the model is reviewed to
show how it translates behavioral data—accuracy, mean response times,
and response time distributions—into components of cognitive process-
ing. Three experiments are used to illustrate experimental manipulations
of three components: stimulus difficulty affects the quality of informa-
tion on which a decision is based; instructions emphasizing either speed
or accuracy affect the criterial amounts of information that a subject re-
quires before initiating a response; and the relative proportions of the
two stimuli affect biases in drift rate and starting point. The experiments
also illustrate the strong constraints that ensure the model is empirically
testable and potentially falsifiable. The broad range of applications of
the model is also reviewed, including research in the domains of aging
and neurophysiology.

1 Introduction

Diffusion models for simple, two-choice decision processes (e.g., Busemeyer
& Townsend, 1993; Diederich & Busemeyer, 2003; Gold & Shadlen, 2001;
Laming, 1968; Link, 1992; Link & Heath, 1975; Palmer, Huk, & Shadlen, 2005;
Ratcliff, 1978, 1981, 1988, 2002; Ratcliff, Cherian, & Segraves, 2003; Ratcliff &
Rouder, 1998, 2000; Ratcliff & Smith, 2004; Ratcliff, Van Zandt, & McKoon,
1999; Roe, Busemeyer, & Townsend, 2001; Stone, 1960; Voss, Rothermund,
& Voss, 2004) have received increasing attention over the past 5 to 10 years
for several reasons. First, in cognitive psychology research, the diffusion
and other sequential sampling models (for a review, see Ratcliff & Smith,
2004) have accounted for more and more behavioral data from more and
more experimental paradigms. Second, they have begun to be applied in
practical domains, such as aging, where they allow new interpretations of
well-known empirical phenomena. Third, the models are being applied to
neurophysiological data, where they show potential for building bridges
between neurophysiological and behavioral data.

This review has three major aims. The first aim is to review and explain
in detail how the diffusion model (Ratcliff, 1978) accounts for the effects
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of various experimental manipulations on all aspects of two-choice data:
accuracy, mean response times for correct responses and for error responses,
and the full response time distributions for correct and error responses. In
particular, it is essential to examine and evaluate the model’s predictions
for the shapes and behaviors of reaction time (RT) distributions and for
the relative speeds of correct and error RTs. It is these aspects of data that
provide strong tests of the diffusion model in particular and sequential
sampling models in general. In the first half of this article, experiments 1, 2,
and 3 illustrate these tests.

The second aim is to provide a diffusion model analysis of a popular
experimental paradigm in the neurophysiological literature, a motion dis-
crimination task. In this task, an array of dots is presented to the subject,
and some proportion of the dots move in the same direction, either right or
left, while the remainder of the dots move in random directions. The task
of the subject is to determine the direction of motion of the dots moving
coherently. The proportion of dots moving coherently is manipulated to
provide levels of difficulty ranging from very difficult to very easy. Experi-
ments 1, 2, and 3 investigated this task with human subjects. The data allow
analyses of both correct and error RT distributions, something that has not
been done before with this task with human subjects. The RT distributions
are notably different in shape from those that have been obtained in the
motion discrimination task with monkeys in neurophysiological research
(Ditterich, 2006; Roitman & Shadlen, 2002), but they are highly consistent
with results from many other paradigms with humans.

For simple two-choice decisions, empirical RT distributions for humans
are generally positively skewed. Increases in the difficulty of a decision lead
to increases in mean RT and decreases in accuracy. Increases in difficulty
also produce regular changes in RT distributions, changes in their spread
but very little change in their shape. Mosteller and Tukey (1977) pointed
out that the shape of a distribution is what is left after location and scale are
removed, where location is the position of the distribution (e.g., the mean)
and scale is the spread (e.g., the standard deviation). One useful way of
comparing RT distributions is to plot quantiles of one distribution against
quantiles of another. If the distributions have the same shape, then the
resulting quantile-quantile plot is linear. Later we present plots of this kind
and show that the diffusion model predicts changes in mean and spread
but little change in shape.

The third aim of the review is to describe how the diffusion model ex-
tracts theoretically relevant components of processing from the accuracy
and RT data of two-choice tasks. Given that the model provides a quali-
tatively and quantitatively accurate account of data, the parameters of the
model represent components of processing, and therefore the effects of ex-
perimental manipulations on the components can be observed. In other
words, the model provides a decomposition of data that isolates compo-
nents so that they can be individually studied. For example, the information
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that becomes available from stimulus encoding can be isolated, modeled,
and then combined with the diffusion decision process to predict accu-
racy and RT distribution data. A model that explains how information is
accrued from a stimulus should provide values of stimulus information
that, when fed through the diffusion model, predict accuracy and RT dis-
tributions. In this way, the diffusion model can provide a meeting point
between a model for stimulus encoding and representation and decision
processes. Similarly, decision criterion settings can be extracted from data
so that models can be developed to explain how the settings are determined
by instructions, payoffs, reward contingencies, and so on. The duration of
processing components outside the decision process can also be extracted
and sometimes used to determine whether one experimental condition dif-
fers from another by the addition of an extra stage of processing. An extra
stage is indicated when the model cannot accommodate the data under the
assumption that the nondecision components have the same duration for all
experimental conditions. In this case, the difference between the durations
for the nondecision components would estimate the duration of the added
stage.

Because the diffusion model can separate components of processing, it
has come to be used in a variety of research domains, for example, to study
the effects of age and aphasia on memory and decision criteria (college
students to 90 year old; Ratcliff, Thapar, & McKoon, 2001, 2003, 2004; Thapar,
Ratcliff, & McKoon, 2003; Ratcliff, Perea, Coleangelo, & Buchanan, 2004) and
the effects of depression on information processing (White, Ratcliff, Vasey, &
McKoon, 2007). Recent studies have also mapped the model’s components
of processing onto neural firing rate data, in part because diffusion processes
appear to naturally approximate the behavior of aggregate firing rates of
populations of neurons. These applications of the model are reviewed in
the latter half of this review.

2 The Diffusion Model

The diffusion model is a model of the cognitive processes involved in sim-
ple two-choice decisions. It separates the quality of evidence entering the
decision from decision criteria and from other, nondecision, processes such
as stimulus encoding and response execution. The model should be applied
only to relatively fast two-choice decisions (mean RTs less than about 1000
to 1500 ms) and only to decisions that are a single-stage decision process
(as opposed to the multiple-stage processes that might be involved in, for
example, reasoning tasks).

The diffusion model assumes that decisions are made by a noisy process
that accumulates information over time from a starting point toward one of
two response criteria or boundaries, as shown in the top panel of Figure 1.
The starting point is labeled z and the boundaries are labeled a and 0. When
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Figure 1: The diffusion decision model. (Top panel) Three simulated paths with
drift rate v, boundary separation a, and starting point z. (Middle panel) Fast
and slow processes from each of two drift rates to illustrate how an equal size
slowdown in drift rate (X) produces a small shift in the leading edge of the RT
distribution (Y) and a larger shift in the tail (Z). (Bottom panel) Encoding time
(u), decision time (d), and response output (w) time. The nondecision component
is the sum of u and w with mean = Ter and with variability represented by a
uniform distribution with range st .

one of the boundaries is reached, a response is initiated. The rate of accumu-
lation of information is called the drift rate (v), and it is determined by the
quality of the information extracted from the stimulus. In an experiment,
the value of drift rate, v, would be different for each stimulus condition that
differed in difficulty. For recognition memory, for example, drift rate would
represent the quality of the match between a test word and memory. A
word presented for study three times would have a higher degree of match
(i.e., a higher drift rate) than a word presented once. The zero point of drift
rate (the drift criterion, Ratcliff, 1985, 2002; Ratcliff et al., 1999) divides drift
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rates into those that have positive values, that is, mean drift rate toward
the A response boundary in Figure 1, and negative values, mean drift rate
toward the B boundary.

There is noise (within-trial variability) in the accumulation of informa-
tion so that processes with the same mean drift rate (v) do not always
terminate at the same time (producing RT distributions) and do not al-
ways terminate at the same boundary (producing errors), as shown by the
three processes, all with the same drift rate, in the top panel of Figure 1.
Within-trial variability in drift rate (s) is a scaling parameter for the diffu-
sion process (i.e., if it were doubled, other parameters could be multiplied
or divided by two to produce exactly the same fits of the model to data).
Note that for Figure 1 and all the other figures illustrating the model in
this review, continuous diffusion processes were approximated by discrete
random-walk processes.

Empirical RT distributions are positively skewed, and in the diffusion
model, this is naturally predicted by simple geometry. In the middle panel
of the figure, distributions of fast processes from a high drift rate and slower
responses from a lower drift rate are shown. If the higher and lower values
of drift rate are reduced by the same amount (X in the figure), then the
fastest processes are slowed by an amount Y and the slowest by a much
larger amount, Z.

The bottom panel of Figure 1 illustrates component processes assumed
by the diffusion model: the decision process with duration d, an encoding
process with duration u (this would include memory access in a memory
task, lexical access in a lexical decision task, and so on), and a response
output process with duration w. When the model is fit to data, u and w are
combined into one parameter to encompass all the nondecision components
with mean duration Ter .

The components of processing are assumed to be variable across trials.
For example, all words studied three times in a recognition memory task
would not have exactly the same drift rate. The across-trial variability in
drift rate is assumed to be normally distributed with standard deviation η.
The starting point is assumed to be uniformly distributed with range sz, and
the nondecision component is assumed to be uniformly distributed with
range st . The first two sources of variability have consequences for the rela-
tive speeds of correct and error responses, and this will be discussed shortly.
One might also expect that the decision criteria would be variable from trial
to trial. However, the effects would closely approximate the effect of start-
ing point variability, and computationally, only one integration over starting
point is needed instead of two separate integrations over the two criteria.

The effect of across-trial variability in the nondecision component de-
pends on the mean value of drift rate (Ratcliff & Tuerlinckx, 2002). With
large values of drift rate, variability in the nondecision component acts to
shift the leading edge of the RT distribution shorter than it would other-
wise be, by as much as 10% of st . With smaller values of drift rate, the
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effect is smaller. Across-trial variability in the nondecision component al-
lows the model to account for data that have considerable variability in the
.1 quantiles of the RT distributions across experimental conditions (Ratcliff
& Tuerlinckx, 2002).

The standard deviation in the duration of the nondecision component
(st/(2 sqrt(3))) that is estimated from experimental data is typically less than
one-quarter the standard deviation in the decision process, so variability
in the nondecision component has little effect on the shape or standard
deviation of overall RT distributions (Ratcliff & Tuerlinckx, 2002, Figure
11). For example, if st is 100 ms (SD = 28.9 ms) and the SD in the decision
process is 100 ms, the combination (square root of the sum of squares) is
104 ms.

2.1 Drift Rate, Boundary Separation, and RT Distributions. Figure
2 illustrates how RT distributions change as a function of drift rate and
boundary separation, the components of processing that were manipulated
in experiments 1 and 2. For each of the three simulation panels, 20 trials
were simulated with the parameter values listed in the figure. p is the
probability of a step toward the A response boundary in the random walk
approximation of the diffusion process, the equivalent of drift rate in the
continuous diffusion process. Twenty processes are sufficient to illustrate
predictions of the model for RT distributions, although they are not exact
(many more would be needed to obtain exact values). Each panel shows all
20 processes. The first point to note is how variable they are, which is due
to within-trial variability in drift rate.

Comparing the top and middle simulations, mean drift rate was changed
from a higher to a lower value while a and z remained constant. The decrease
in drift rate slows responses in the leading edge of the RT distribution
(reflected in the .1 quantile of RTs) a little, and it slows responses in the tail
(reflected in the .9 quantile) more. The diffusion model predicts changes in
the .9 and .1 quantiles typically to be in the ratio of about 4:1. Comparing
the middle and bottom simulations, boundary separation and starting point
(i.e., a and z) were decreased while drift rate stayed constant. The decrease
produces large changes in both the tail and the leading edge (the .9 and .1
quantiles), typically in a ratio of about 2:1. Also, decreasing the boundary
separation results in a speed-accuracy trade-off: RTs decrease at the cost of
more errors. As will be shown later, the model can explain the effects of
manipulations of stimulus difficulty with changes only in drift rate, and it
can explain the effects of speed versus accuracy instructions with changes
only in boundary separation (bottom panel of Figure 2).

2.2 Response Proportions and RT Distributions. A standard manipu-
lation in two-choice experiments in psychophysics and human performance
research is to vary the relative proportions of the two responses (e.g., Swets,
1961). This can be accomplished by changing the proportions of the stimuli:
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Figure 2: Simulated diffusion processes. Each of the top three panels shows 20
processes simulated by random walks. Q.1 and Q.9 refer to the .1 and .9 quantiles
of the resulting sets of RTs. For the top simulation, the upper boundary is a = 20
(the starting point is z = a/2 in each simulation), the lower boundary is 0, and
the probability of taking a step toward the top boundary of .6. For the second
simulation, the probability of taking a step toward the top boundary is reduced
to .55, and for the third simulation, the upper boundary is reduced to a = 12.
On the bottom panel, boundary separation alone changes between speed and
accuracy instructions, and drift rate alone varies with stimulus difficulty.
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stimuli for which one response is correct are presented on a larger propor-
tion of trials than stimuli for which the other response is correct. Response
proportions can also be manipulated without changing the proportions of
stimuli: subjects can be asked to be more careful about one response than
the other, or subjects can be rewarded to a greater degree for one response
than the other.

In the diffusion model, there are two ways of modeling the effects of
these proportion manipulations. For one (see the top panel, Figure 3), the
starting point moves closer to the more likely response. The effects are
illustrated with 20-trial simulations in the second panel of Figure 3 (a was
set at 20, p at .55). When the starting point is far from the boundary at which
a response would be correct, the whole distribution of correct responses is
shifted to longer RTs than when the starting point is equidistant between
the two boundaries, with the slowest responses (e.g., .9 quantiles) slowing
much more than the fastest responses (.1 quantiles). This can be seen by
comparing the top simulation in Figure 3 to the middle simulation in Figure
2. When the starting point is near the boundary at which a response would
be correct, the whole distribution of correct responses is shifted to shorter
RTs than when the boundaries are equidistant (second simulation in Figure
3 to the middle simulation in Figure 2). In addition, there are more errors
when the starting point is far from the correct boundary than when it is
near.

The second way of modeling response proportion manipulations is to
adjust the zero point of drift rate. The bottom panel of Figure 3 illustrates
the distributions of drift rates for stimuli for which A is the correct response
and stimuli for which B is the correct response. The distributions arise from
across-trial variability in drift rate. Values of drift rate above the zero point
are positive, that is, with drift toward the A boundary, and values below the
zero point are negative, with drift toward the B boundary. When the prob-
ability of A being the correct response is higher (left graph), the zero point
shifts toward the B distribution, and when the probability of B being the
correct response is higher (right graph), the zero point shifts toward the A
distribution. The differences between the means of the distributions do not
change (va − vb = vc − vd ), only the zero point. The consequences for accu-
racy and distribution shape are the same as those for changing drift rate. In
the simulations in Figure 2, a higher drift rate produces faster and more ac-
curate responses (top simulation), while a lower drift rate produces slower
and less accurate responses (second simulation). For RT distributions, this
results in small changes in the position of leading edge and larger changes
in the position of the tail as in Figure 2 first and second simulations.

Empirically, the two possible accounts of probability effects can be dis-
tinguished by their differing effects on RT distributions. As just explained,
a shift in the starting point of the process produces large changes in both
the leading edge and tail, and a shift in the zero point of drift rate produces
large changes only in the tail.
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Figure 3: Diffusion model explanations for the effects of response probability
manipulations. In the top panel, the first possible account is presented: starting
point varying with probability. The effects are illustrated with two simulations
in the second panel with z = 5 and z = 15. In the bottom panel, the second
possibility is presented: drift criterion (the zero point) varying with probability.
When the probability of response A is higher, the drift rates are va and vb , with
the zero point close to vb . When the probability of response B is higher, the
drift rates are vc and vd , and the zero point is closer to vc . Note that this second
alternative is exactly equivalent to how the criterion would change in signal
detection theory from psychophysics.
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Adjusting the zero point for drift rate has an exact analogy in signal
detection theory. The diffusion model replaces the signal and noise distri-
butions of signal detection theory with distributions of drift rates (Ratcliff,
1978, 1985; Ratcliff et al., 1999). In signal detection theory, the difference
between the signal and noise distributions (d′) is usually invariant over
probability manipulations, and in the diffusion model, the difference be-
tween the drift rate distributions is likewise invariant in at least the few
cases examined so far.

2.3 Correct Versus Error RTs. Error responses are typically slower than
correct responses when accuracy is stressed in instructions or in experiments
where accuracy is low and errors are usually faster than correct responses
when speed is stressed in instructions or when accuracy is high (Luce, 1986;
Swensson, 1972).

Early random walk models could not explain these results. For example,
if the two boundaries were equidistant from the starting point, the models
predicted that correct RTs would be equal to error RTs, a result almost
always contradicted by data (e.g., Stone, 1960). There were several partially
successful attempts to produce unequal RTs (e.g., Laming, 1968; Link &
Heath, 1975; Ratcliff, 1978). When Ratcliff (1978) assumed that drift rate was
variable across trials, the diffusion model could predict error RTs longer than
correct RTs. Laming (1968) showed that if the starting point was variable
from trial to trial (hypothesized to result from sampling before the stimulus
had been presented), then errors were predicted to be faster than correct
responses, as they were for the choice reaction time experiments examined
by Laming. Ratcliff (1981) suggested that the combination of across-trial
variability in drift rate and across-trial variability in starting point might be
able to account for all of the empirically observed patterns of correct and
error RTs. Ratcliff et al. (1999; also Ratcliff & Rouder, 1998) later showed
that this suggestion is correct. With the availability of fast computers that
allowed the model to be fit to data, Ratcliff et al. demonstrated that the
model could explain data from experimental conditions for which error
RTs were faster than correct RTs and conditions for which they were slower,
even when errors moved from being slower to being faster than correct
responses in a single experiment.

Figure 4 shows how the across-trial variabilities work to produce the
relative speeds of correct and error RTs. The top panel shows a single
process with mean drift rate (v) and starting point (z) midway between the
two boundaries; in this case, correct and error RTs are equal. In the middle
panel, the full distribution of drift rates around the mean v that results
from across-trial variability is abbreviated to just two values: one (v1) a
larger value of drift rate and the other (v2) a smaller value. Both correct
and error RTs are shorter for the v1 drift rate than the v2 drift rate, and
accuracy is better. When the two processes are combined, as they would
be in the full distribution, errors are slower than correct responses because
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Figure 4: Variability in drift rate and starting point and the effects on speed and
accuracy. The top panel shows RT distributions and response probabilities for
correct and error responses with drift rate v. For a single drift rate, correct and
error responses have equal RTs, 400 ms in the illustration. The middle panel
shows two process with drift rates v1 and v2 and the starting point halfway
between the boundaries with correct and error RTs of 400 ms for v1 and 600
ms for v2. Averaging these two illustrates the effects of variability in drift rate
across trials and in the illustration yields error responses slower than correct
responses. The bottom panel shows processes with two starting points and
drift rate v. Averaging processes with starting point a + .5sz (high accuracy and
short RTs) and starting point a − .5sz (lower accuracy and short RTs) yield error
responses faster than correct responses.
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the slow error responses (RT 600 ms) from v2 have a greater probability of
occurrence (probability .20) than the fast error responses (RT 400 ms) from
v1 (probability .05).

In the bottom panel, the distribution in starting point due to across-
trial variability is abbreviated to two values: one closer to the A boundary
(at z = a + .5sz) and one farther from the A boundary (at z = a − .5sz).
Processes starting near the incorrect boundary have a greater probability of
reaching that boundary (probability .20) and are faster than those starting
farther away (probability .02), so their combination leads to errors faster
than correct responses.

2.4 Scaling of Accuracy and RT. A rarely discussed problem is the
potentially troubling relationship between accuracy and RT. Accuracy has
a scale with limits of zero and 1, while RT has a lower limit of zero and
an upper limit of infinity. In addition, the standard deviations in the two
measures change differently: the standard deviation in accuracy decreases
as accuracy approaches 1, whereas the standard deviation in RT increases
as RT slows. In the diffusion model (as well as other sequential sampling
models), these relations between accuracy and RT are directly explained.
The model accounts for how accuracy and RT scale relative to each other
and how manipulations of experimental variables differentially affect them.
This is a major advance over models that address only one dependent
variable—only mean RT or only accuracy.

2.5 Summarizing RT Distribution Shape. Ratcliff (1979) showed that
for two-choice tasks, quantile RTs provide a good summary of the RT dis-
tribution for an experimental condition and that averaging the quantiles
over subjects provides a good summary of the distribution for the average
subject. To find the quantiles, RTs are ordered from shortest to longest, and
the RT corresponding to the point that is 10% from the fastest response is
the .1 quantile, the point that is 30% from the fastest is the .3 quantile, and
so on (interpolating when necessary). In Figure 5, the RT distribution for
the RTs in an experimental condition is shown as a histogram, and the .1, .3,
.5, .7, and .9 quantiles are marked on the x-axis. The figure shows how the
shape of the histogram can be recovered from the quantiles by construct-
ing probability mass rectangles between a very low probability and the .1
quantile, between each pair of quantiles from .1 to .9 (probability .2 between
each), and between a very high probability and the .9 quantile. In Figure 5,
the lowest probability was .005 (.095 probability between .005 and .1) and
the highest was .995 (.095 probability between .9 and .995). (The .005 and
.995 values were used instead of 0 and 1 because a true zero probability
density at the upper value is at infinity.) Over the whole distribution, the
five quantile RTs provide an adequate summary for modeling purposes
because they capture the typical RT distribution shape: unimodal with a
relatively rapid rise to a peak followed by a longer tail.
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Figure 5: A RT distribution overlaid with .1, .3, .5, .7, and .9 quantiles, where
the .1 quantile ranges from .005 to .1 and the .9 quantile from .9 to .995. The
areas between each pair of middle quantiles are .2, and the areas below .1 and
above .9 are .095. The quantile rectangles capture the main features of the RT
distribution and therefore a reasonable summary of overall distribution shape.

2.6 Fitting the Diffusion Model to Data. Ratcliff and Tuerlinckx (2002)
evaluated several methods for fitting the diffusion model to data and found
that a chi-square method using quantile RTs provided the best balance be-
tween accurate recovery of parameter values (with the smallest variability
in parameter estimates) and robustness to contaminant RTs (e.g., outlier
RTs). The method uses quantiles of the RT distributions for correct and er-
ror responses for each condition of an experiment (the .1, .3, .5, .7, and .9
quantiles are usually used). The diffusion model predicts the cumulative
probability of a response at each RT quantile. Subtracting the cumulative
probabilities for each successive quantile from the next higher quantile gives
the proportion of responses between adjacent quantiles. For the chi-square
computation, these are the expected values, to be compared to the observed
proportions of responses between the quantiles (i.e., the proportions be-
tween .1, .3, .5, .7, and .9, are each .2, and the proportions below .1 and
above .9 are both .1) multiplied by the number of observations. Summing
over (Observed-Expected)2/Expected for correct and error responses for
each condition gives a single chi-square value that is minimized with a gen-
eral SIMPLEX minimization routine. The parameter values for the model
are adjusted by SIMPLEX until the minimum chi-square value is obtained
(Ratcliff & Tuerlinckx, 2002).

Typically, before fitting the model to data, short and long outlier RTs
are eliminated (usually no more than 2% to 3% of responses). Contaminant
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responses that are within the upper and lower cutoffs (e.g., from momen-
tary lapses of attention) are modeled by including a parameter, po , that
represents the proportion of contaminant responses in each condition of
an experiment (Ratcliff & Tuerlinckx, 2002). Ratcliff and Tuerlinckx showed
that excluding contaminants in this manner allows accurate recovery of
the other parameters of the diffusion model (i.e., the estimates of the other
components of processing); that is, explicitly modeling contaminants keeps
them from affecting estimates of the other model parameters. Ratcliff and
Tuerlinckx assumed that the distribution of contaminants was uniform,
with maximum and minimum values corresponding to each experimental
condition’s maximum and minimum RTs (after cutting out short and long
outliers). Ratcliff (in press) showed that the recovery of the other parame-
ters was accurate under the assumption of a uniform distribution even if
the true contaminant distribution was calculated by a constant time added
to an RT from the diffusion process or by an exponential time added to an
RT from the diffusion process.

3 Quantile Probability Plots and Across-Trial Variability

In order to present both the RT distributions and accuracy values for all
the conditions of an experiment on the same graph, the quantiles of the RT
distribution for each condition are plotted vertically on the y-axis and the
proportion of correct and error responses are plotted on the x-axis. Figure 6
shows examples similar to those to be reported for experiment 1 below.
For each graph, there are six conditions, varying from a high probability
of one response being correct to a high probability of the other response
being correct. For each condition, there are two vertical lines of quantiles:
one for correct responses and one for errors. Because the probability of a
correct response is usually larger than .5, quantiles for correct responses
are usually on the right of .5 and quantiles for errors on the left (the two
probabilities sum to 1.0). For example, if the probability of a correct response
is .9, the probability of an error response is .1. The difficulty of the stimuli in
each condition determines the probabilities of correct and error responses,
that is, the location of the quantiles on the x-axis. The lines connecting the
quantiles, from one condition to another, trace out the changes in the RT
distributions across conditions.

Quantile probability functions display all of the data that the diffusion
model explains: the changes in accuracy across conditions and the changes
in correct and error mean RTs and RT distributions across conditions. The
structure of the model places strong constraints on how the model can fit
these data. Ter determines the placement of the quantile probability func-
tions vertically, that is, on the y-axis. The shapes of the quantile probability
functions are determined by just three values: the distance between the
two response boundaries a, the standard deviation in drift rate across trials,
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Figure 6: Quantile probability functions. The figures show possible outcomes
for experiment 1 in which there are six levels of coherence (from 5% to 50%).
Predicted quantile RTs for the .1, .3, .5 (median), .7, and .9 quantiles (stacked
vertically) are plotted against response proportion for each of the six conditions.
Correct responses for left- and right-moving stimuli, combined, are plotted to
the right, and error responses for left- and right-moving stimuli combined are
plotted to the left. The bold horizontal line in each figure connects correct and
error median RTs for the third most accurate condition in order to highlight
whether error responses are slower or faster than correct responses. The drift
rates from which the data were simulated are those obtained in experiment 1.
For all six panels, the starting point (z) was halfway between the boundaries.
Across the six panels, boundary separation a takes on values of 0.16, 0.11, or
0.08; across-trial variability in starting point rate sz takes on values of 0 or 0.07;
across-trial variability in Ter , st , takes on values of 0 or 0.20; and across-trial
variability in drift rate, η, takes on values of 0 or 0.12. Ter is the mean time taken
up by the nondecision components of processing is set at 300 ms in the plots.
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η, and the range of the starting point across trials, sz. The drift rates for
the different levels of stimulus difficulty (i.e., different conditions) sweep
out the quantile probability function across response probabilities, with the
parameter a being the main determinant of the spread of the RT distribution
at each level of difficulty.

The left-hand plots in Figure 6 demonstrate how across-trial variabil-
ity affects the relative RTs for correct and error responses. In all the plots,
the starting point is midway between the two boundaries. For the top
plot, across-trial variability in both drift rate and starting point is set at
zero, and the quantile probability functions form symmetric inverted �’s.
The heavy black line connects median RTs for correct and error responses
for the same condition, and this shows equal RTs for correct and error
responses for the top plot. For the middle plot, across-trial variability in
starting point is zero, and across-trial variability in drift rate is set at a
value approximating that for experiment 1; the result is error responses
slower than correct responses. In the bottom panel, across-trial variabil-
ity in drift rate is zero, across-trial variability in starting point is set at a
value near that of experiment 1, and error responses are faster than correct
responses.

The top two right-hand panels in Figure 6 have values of variability in
drift and starting point about the same as those in experiment 1, and they
illustrate the effect of altering boundary separation (e.g., a speed/accuracy
manipulation) on error RTs. When boundary separation, a, is a large value
typical of fits to data, the range of starting point, sz = 0.07, is small relative
to the boundary separation, a = 0.16, and so error RTs are determined pri-
marily by variability in drift across trials; the result is errors slower than
correct responses. When boundary separation is decreased (middle right
panel), variability in starting point is large relative to the boundary sepa-
ration, a = 0.08, and starting point variability dominates variability in drift
rate, resulting in shorter error than correct RTs.

The bottom right panel shows how variability in the nondecision com-
ponent of processing affects distribution shape. The other five panels have
variability set at a value close to that for experiment 1, and the bottom right
panel has the value set at zero (i.e., st = 0). The lower quantiles (.1 and .3)
are closer together than when st is larger (e.g., middle right panel). Larger
values of st can accommodate more variability across experimental condi-
tions in the .1 quantile RTs, as well as an increase in the separation of the
.1 and .3 quantile RTs, features that are needed to fit some sets of data (see
Ratcliff & Tuerlinckx, 2002, for further discussion).

The patterns of results illustrated in the six panels have all been ob-
tained in fits to experimental data (Ratcliff, Gomez, & McKoon, 2004; Rat-
cliff et al., 2001; Ratcliff, Thapar, & McKoon, 2003; Ratcliff et al., 1999).
We now apply the model to experiments using the motion discrimination
procedure.
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4 Experiments

Describing the full range of predictions from the diffusion model is most
efficiently done in the context of real data. Rather than re-presenting data
from already published experiments, we conducted new ones, using human
subjects and the motion discrimination paradigm (Ball & Sekuler, 1982)
that is currently popular in neurobiology research with monkeys (Britten,
Shadlen, Newsome, & Movshon, 1992; Newsome & Pare, 1988; Roitman &
Shadlen, 2002; Salzman, Murasugi, Britten, & Newsome, 1992). Experiments
1 and 2 were replications of, and experiment 3 was similar to, experiments
with human subjects by Palmer et al. (2005). Palmer et al. did not examine
RT distributions nor did the simplified model they presented account for
error RTs (which they acknowledge). Here we use the diffusion model to
account for error RTs as well as correct RTs and accuracy, and to provide
comprehensive fits to RT distributions. We show that the RT distributions
obtained with human subjects are quite different from those obtained with
monkey subjects.

In the motion discrimination paradigm, a stimulus is composed of a set
of dots in a circular window. On each trial, some proportion of the dots
move in one direction (either to the left or right), and the rest move in
random directions. Subjects are asked to decide whether the direction of
the coherently moving dots is to the right or the left. Stimulus difficulty is
varied via the proportion of dots moving in the same direction, typically
from near 0% to 50%.

As stressed above, the most critical tests for evaluating sequential sam-
pling models have to do with RT distributions. Successful models make
precise predictions about the shape of RT distributions, and as a corollary,
they make strong predictions about how distributions change as param-
eter values change. For example, as noted above, changes in drift rate
lead to larger changes in the tail of the RT distribution than in the lead-
ing edge, in a ratio of about 4:1, whereas changes in boundary separa-
tion lead to changes in the leading edge that are about half the size of
changes in the tail. Whether drift rate or boundary separation is varied,
the shape of the RT distribution remains almost the same, as we show
below.

Experiments 1 through 3 test the diffusion model and show how it cap-
tures the effects of three key manipulations: one that should affect drift
rate, one that should affect boundary separation, and one that should affect
either the location of the starting point or the drift rate criterion (or both).
In experiment 1, stimulus difficulty was varied. According to the diffusion
model, differences in difficulty should lead to differences in drift rate, which
in turn predicts that most of the differences among the mean RTs should
come from spreading in the tail of the RT distribution (the higher quan-
tiles). In experiment 2, subjects were instructed to respond as accurately as
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possible on some blocks of trials and as quickly as possible on other blocks.
In the model, this should affect boundary separation, a, predicting that the
differences in mean RTs should come from both spreading in the tail of the
distribution and shifting in the leading edge (the .1 quantile). In experiment
3, the proportions of stimuli for which the left and right responses were cor-
rect were varied between blocks of trials, in the ratios 75:25 and 25:75. The
question was whether the resulting biases in the data would be the result
of moving the starting point nearer the boundary for the most probable
response or the result of a change in drift criterion or both.

In some paradigms with monkeys, RT distributions are right-skewed,
and they vary across experimental conditions in the ways predicted by the
diffusion model (Hanes & Schall, 1996; Ratcliff, Cherian, et al., 2003; Ratcliff,
Hasegawa, Hasegawa, Smith, & Segraves, 2007). However in the motion
discrimination paradigm, Ditterich (2006) found that in data collected by
Roitman and Shadlen (2002), the distributions were inconsistent with the
diffusion model: they were nearly symmetric in shape, widening as diffi-
culty increased (RTs were also much longer than in data in Ratcliff, Cherian,
et al., 2003, and Ratcliff, Hasegawa, et al., 2007). Ditterich proposed a model
in which evidence is summed in two separate accumulators at different
rates, but the rate of accumulation in both accumulators increases with
time until it asymptotes at a high value after 1 s of processing. Because the
drift rates increase, there is a greater and greater probability of termination
as time increases, that is, an increasing hazard function, where the hazard
function represents the probability that the process terminates in the next
instant of time given that it has not terminated previously. This contrasts
with the diffusion model’s assumption that drift rate remains constant over
time, which gives rise to approximately constant hazard functions (see
Ratcliff et al., 1999, for further discussion). In accord with Roitman and
Shadlen’s data, Ditterich’s model predicts RT distributions that are approx-
imately symmetric. One of the issues addressed in experiments 1 through 3
was whether human RT distributions in the motion detection paradigm are
right skewed with approximately exponential tails like other two-choice
data from humans and monkeys, or approximately symmetrical as in Roit-
man and Shadlen’s data from monkeys.

4.1 Experiment 1. The aim of experiment 1 was to replicate basic find-
ings in the motion discrimination paradigm (Britten et al., 1992; Palmer et
al., 2005; Roitman & Shadlen, 2002; Shadlen & Newsome, 2001; Salzman et
al., 1992) using stimuli that span a range of levels of coherence from 5% to
50% so that accuracy varies from near ceiling (over 90% correct) to near floor
(under 60% correct). The one major difference between our paradigm and
the ones listed above is that in our paradigm, we did not require subjects
to maintain fixation during stimulus presentation; rather, they were free to
move their eyes.
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4.1.1 Method: Procedure and Stimuli. The stimuli were constructed using
the method presented in earlier motion discrimination experiments and
the procedure followed that used in Palmer et al. (2005; see also Roitman
& Shadlen, 2002). On each trial, a series of frames was displayed on a
PC screen, 16.7 ms per frame. On each frame, five dots were displayed,
1 by 1 pixel in size (0.054 degree square), in a circular aperture 5.4 de-
grees in diameter centered on the PC screen. On the first three frames,
the dots were located in random positions. On the fourth and each sub-
sequent frame, a proportion of the dots moved coherently, that is, in the
same direction for each frame, by four pixels (0.216 degrees), either left or
right. For the fourth frame, the dots that moved were randomly chosen
from the dots that had appeared on the first frame; for the fifth frame, they
were chosen randomly from those that had appeared on the second frame;
for the sixth frame, they were chosen randomly from those that had ap-
peared on the third frame; and so on, until the subject pressed a response
key. Across the frames, the movement speed of the coherently moving
dots was 13 degrees per s. On each of the fourth and subsequent frames,
the dots that were not chosen to move coherently appeared in random
locations.

Coherence was defined as the probability across frames with which dots
moved. There were 12 conditions: either the coherently moving dots moved
left or right, and the probabilities of a dot moving were .05, .10, .15, .25, .35,
and .50. For example, if the coherent direction was left and the probability
was .05, then the probability that a dot in each frame would move left would
be .05.

There were 10 blocks of 96 trials each, with a subject-paced pause between
each block. Subjects were asked to respond as quickly and accurately as
possible, pressing the backward slash key if the coherent motion was toward
the right and the Z key if the motion was toward the left. If a response was
correct, the screen was cleared, and 300 ms later, the next trial began. If a
response was an error, an error message was printed for 300 ms before the
300 ms blank screen. If the RT was shorter than 250 ms or longer than 1500
ms, an additional message, “TOO FAST” or “TOO SLOW,” was presented
for an additional 300 ms before the blank screen. There were few “TOO
FAST” or “TOO SLOW” messages, and most of them occurred in the first
trials as subjects calibrated their RTs.

4.1.2 Subjects. Fifteen college students participated in the experiment
for course credit in an introductory psychology course at The Ohio State
University.

4.1.3 Results. Because RTs and accuracy were about the same for re-
sponses for left-moving and right-moving stimuli, correct “left” and “right”
responses were combined for analyses, and so were incorrect “left” and
“right” responses. Accuracy varied across coherence levels from 0.58 to
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Figure 7: Quantile probability functions for experiment 1.

0.94, and mean RTs varied from about 660 ms to about 550 ms. Error RTs
were generally a little longer than correct RTs.

Figure 7 shows a quantile probability plot of the results. The x-axis
shows the six coherence conditions, with correct responses for each condi-
tion on the right and error responses on the left. For example, for coherence
of 50%, the proportion of correct responses was .94 on the far right, and
the proportion of error responses was .06 on the far left. For each condi-
tion, the five vertical points (the x’s) are the five quantile RTs (.1, .3, .5,
.7, .9). The figure shows how the RT distributions changed across condi-
tions. As accuracy decreased (i.e., as difficulty increased), the tails of the
RT distributions spread out (the higher quantiles, by as much as 300 ms),
and the leading edge changed only a little (the .1 quantile, by less than
40 ms).

The data for each condition for correct responses were averaged across
subjects, and so were the data for error responses. Then the chi-square
method (Ratcliff & Tuerlinckx, 2002) was used to find the parameter values
for the model that best fit the data (see Tables 1 and 2). The quantiles
predicted from these values are plotted in Figure 7 with o’s joined by lines
to indicate how they varied as a function of drift rate. The predicted and
observed RTs are close to each other, showing an excellent fit of the model
to the data.
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Table 1: Parameters for the Diffusion Model Fits to Experiments 1 to 3.

Experiment a1 a2 z1 z2 Ter η sz st χ2 df

1 0.111 – 0.056 – 0.418 0.122 0.067 0.199 241 55
2 (speed-accuracy) 0.109 0.152 0.055 0.076 0.414 0.073 0.065 0.243 421 78
3 (probability) 0.115 – 0.039 0.073 0.455 0.044 0.059 0.294 723 162

Notes: For experiment 2, subscript 1 for a and z refers to speed condition and subscript 2
refers to the accuracy condition. For experiment 3, subscript 1 for z refers to the condition
with high probability of right responses, and subscript 2 refers to high probability of
left responses, For the chi-square values to be interpretable in the standard way, they
would have to be based on data from single subjects, but here they are based on averages
over subjects. The chi-square values presented provide assessment of relative goodness of
fit.

Table 2: Drift Rates for the Diffusion Model Fits to Experiments 1 to 3.

Experiment 5% v1 10% v2 15% v3 25% v4 35% v5 50% v6 dc1 dc2

1 0.042 0.079 0.133 0.227 0.291 0.369 – –
2 (speed-accuracy) 0.031 0.073 0.101 – 0.206 – – –
3 (probability) 0.053 0.080 0.115 – 0.229 – −0.021 0.033

Note: The drift criterion is the amount added to the drift rates; for the condition with
higher probability of right responses, dc1 is added, and for the condition with higher
probability of left responses, dc2 is added.

Tables 1 and 2 show that the model fit the data with only drift rate varying
across the six conditions of the experiment, that is, across the six levels of
difficulty. All the other parameters of the model were held constant across
the six conditions. Variability in drift rate and variability in starting point
were moderately large, but because boundary separation was moderately
large, errors were slower than correct responses.

The averaging of data over subjects might be considered a problem
because the averages might not be representative of individual subjects. In
12 large studies with 30 to 40 subjects per group, Ratcliff et al. (2001), Ratcliff,
Thapar, and McKoon (2003, 2004), Ratcliff, Thapar, Gomez, and McKoon
(2004), and Thapar et al. (2003) showed that the parameter values obtained
from fitting the model to data averaged over subjects were close to the
parameter values obtained from averaging the parameters obtained from
fits of the model to the data from individual subjects. In the experiments
presented here, the parameter values from the two methods were within 2
standard errors with only one or two exceptions.

An important question is whether the RT distributions changed shape
across conditions. The diffusion model predicts little change in distribution
shape across conditions, that almost all the change in the distributions is
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Figure 8: Quantile RTs for the six conditions in experiment 1 plotted against
quantiles for the third most accurate condition (25% coherence). The top panel
shows data quantiles, and the bottom panel shows quantiles predicted from the
diffusion model.

in position and spread (i.e., only in location and scale; Mosteller & Tukey,
1977). Figure 8 shows quantile-quantile plots for correct and error responses
for observed and predicted data from experiment 1. One condition, the 25%
coherence condition, was selected, and the quantiles for responses in the
other conditions were plotted against the quantiles for this condition. The
25% condition was chosen because it had moderately high accuracy, yet
enough error RTs to provide reliable estimates of error RT quantiles. (The
results were the same when any of the other conditions was chosen as the
base for comparison). The top panels show the data. For correct responses,
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the quantile-quantile plots are almost linear, and for error responses, the
functions are linear except for the condition with the lowest accuracy (the
line marked 6 in the top right panel) where quantile RTs were highly vari-
able because of relatively low numbers of observations. The diffusion model
predicts linear functions, and the best-fitting functions from the model are
shown in the bottom two panels. The findings of linear quantile-quantile
plots match those from unpublished analyses from many other experi-
ments (e.g., Ratcliff et al., 2001; Ratcliff, Thapar, & McKoon, 2003, 2004;
Ratcliff, Thapar, Gomez, et al., 2004; Thapar et al., 2003). Although not pre-
sented, the model’s predictions also matched the quantile-quantile plots
for experiments 2 and 3 (because the model fit the quantiles separately).
Also consistent with the diffusion model, plotting the quantiles from one
experiment against those of other experiments shows linear functions (the
Ratcliff, Thapar, and McKoon studies just cited).

The important conclusion from the quantile-quantile plots is that RT
distributions show considerable invariance in shape across conditions and
across experiments. This is an important regularity in experimental data in
human response time studies. For a model to be successful, it has to predict
this invariance in shape across the range of parameter values that give rise
to RTs and accuracy values that match data.

4.2 Experiment 2. A standard experimental method of decoupling deci-
sion criteria from the stimulus information that drives the diffusion process
is to vary speed and accuracy instructions. For some blocks of trials, sub-
jects are instructed to respond as quickly as possible and for other blocks
of trials as accurately as possible. In the diffusion model, speed-accuracy
trade-offs are modeled by altering the boundaries of the decision process:
wider boundaries require more information before a decision can be made,
and this leads to more accurate and slower responses. It is important to
stress that when subjects respond to speed versus accuracy instructions, all
the dependent variables change (accuracy, mean RT, and RT distributions
for correct and error responses). As the model has been implemented in
recent studies, the effects of speed versus accuracy instructions have been
explained with only boundary separation (and therefore starting point)
varying. However, it is possible, as suggested by electrophysiological data
from Rinkenauer, Osman, Ulrich, Muller-Gethmann, and Mattes (2004), that
speed-accuracy instructions also affect nondecision components of process-
ing; for example, speed instructions might lead to a decrease in encoding
time. To allow for such effects in experiment 2, the model was implemented
with different values of Ter for speed and accuracy instructions. However,
the best-fitting values differed by 6 ms, so the results presented below used
only a single value.

4.2.1 Method. The experiment used the same stimuli and procedure as
experiment 1 with the following exceptions. First, because the speed and
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Figure 9: Quantile probability functions for the speed and accuracy instruction
conditions for experiment 2.

accuracy instruction manipulation doubled the number of conditions and
halved the number of observations, the number of coherence values was re-
duced to four: 5%, 10%, 15%, and 35%. Second, at the beginning of each block
of 96 trials, instructions were presented to indicate whether responses in
the block should be made as quickly as possible or as accurately as possible.
Third, there were no “TOO SLOW” messages in the blocks with accuracy
instructions. Fourteen subjects from the same population as experiment 1
participated in the experiment.

4.2.2 Results. The results are displayed as quantile probability plots in
Figure 9; the x’s are the data, and the o’s are the model predictions. The
best-fitting parameter values for the model are shown in Tables 1 and 2. RTs
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and accuracy were about the same for left- and right-moving stimuli, for
correct and error responses, so they were combined as in experiment 1. The
model fit the data well, with no systematic differences between predictions
and data. The predictions from the model that are displayed in Figure 9
were generated with Ter held constant across instructions.

As in experiment 1, the effects of stimulus difficulty were accommodated
in the model by changes in drift rate. As mean RT increased across coherence
levels, the .1 quantile RTs changed little (30 ms or less), but the .9 quantile
RTs spread by as much as 200 ms with speed instructions and 400 ms with
accuracy instructions.

RTs for error responses were about the same as for correct responses. In
experiment 1, errors were slower than correct responses. However in this
experiment, variability in drift rate across trials was smaller than experi-
ment 1, producing faster errors relative to correct responses compared with
experiment 1.

Speed versus accuracy instructions had small effects on accuracy, ranging
from 0% to 6%. In Figure 9, higher accuracy with accuracy instructions is
shown by the shift outward for correct responses toward larger proportions
of correct responses (and corresponding smaller proportions of errors). In
contrast, the effects of instructions on RTs were large. The effect on median
RTs for correct and error responses was between 120 and 200 ms, the effect
on the .1 quantiles was between 40 and 100 ms, and the effect on the .9
quantiles was between 250 and 550 ms. These effects were accommodated
entirely by shifts in boundary position.

Overall, the model accounts for the data with only boundary separation
varying between speed and accuracy instructions and only drift rate vary-
ing with stimulus difficulty. It simultaneously captures the small effect of
difficulty on the leading edge of the RT distributions, the large effect of dif-
ficulty on the tails, the small effect of instructions on accuracy, and the large
effect of instructions on RTs. The model has done equally well with these
same patterns of data in many other experiments (e.g., Ratcliff, 2002, 2006;
Ratcliff & Rouder, 1998; Ratcliff et al., 2001; Ratcliff, Thapar, & McKoon,
2003, 2004).

4.3 Experiment 3. Issues of current interest in the neurophysiological
decision-making literature with animals concern relative response rates
for the two alternatives in two-choice tasks (e.g., Bogacz, Brown, Moehlis,
Holmes, & Cohen, 2006; Sugrue, Corrado, & Newsome, 2005, and refer-
ences therein). Manipulations of relative weighting of the two alternatives
allow investigation of response biases and how they are affected by reward
rate, response proportions, relative size of rewards, feedback on response
accuracy, and so on.

In experiment 3, the proportion of left-moving versus right-moving stim-
uli was varied in order to manipulate the relative weights assigned to the
two responses. In half of the blocks of trials, 75% of the stimuli moved in
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one direction and 25% in the other, and in the other half of the blocks, the
proportions were reversed. In the diffusion model, this manipulation could
cause the starting point to move closer to the more likely decision boundary,
or it could cause the drift criterion to move so that the more likely stim-
ulus had a higher relative value of drift rate (or it could cause both). The
possibilities have different behavioral signatures. If the model fits the data
well, these signatures allow discrimination between the two possibilities,
starting point or drift criterion, or, if the change-of-proportion manipulation
affects both the starting point and the drift criterion, the model can identify
how much each contributes to effects on performance.

4.3.1 Method. The stimuli and procedure were the same as for exper-
iment 1 with the following exceptions. First, because the proportion ma-
nipulation doubled the number of conditions and halved the number of
observations, the number of coherence values was reduced to the same
four as in experiment 2: 5%, 10%, 15%, and 35%. Second, at the beginning of
the experiment, the proportion manipulation was explained to the subjects;
then, at the beginning of each block of 96 trials, subjects were informed
what the relative proportion of the two stimulus types would be. Seventeen
subjects from the same population as experiments 1 and 2 served in this
experiment.

4.3.2 Results. Because the proportions of the two stimuli tested for the
high- versus low-probability stimuli produced an asymmetry between re-
sponses in accuracy of the two responses and also RTs for correct responses
and error responses, they were not combined as they were for experiments
1 and 2. The separate quantile probability plots are shown in Figure 10, and
the best-fitting parameter values are shown in Tables 1 and 2. The model
fit the data well, although there were systematic misses in the .9 quantiles
for error responses. These misses were systematic, but less dramatic than
might appear because there were relatively few errors for these conditions.

The effects of stimulus difficulty were the same as in experiments 1 and 2.
Mean RT increased across stimulus difficulty conditions with the .1 quantile
RTs changing little: 15 ms or less for the high-proportion stimulus and up
to 65 ms for the low-proportion stimulus. The .9 quantile RTs changed by
150 to 250 ms. In the model, the effects of difficulty were attributed solely
to changes in drift rate.

The effects of the stimulus proportion manipulation were to increase
accuracy and decrease RTs for the more likely stimuli. The increase in ac-
curacy is shown by the outward shift of the RT quantiles toward a higher
probability of correct responses for the bottom left and the top right panels
in Figure 10 and the opposite shift from the bottom left to the bottom right
panels. The decrease in RTs was due to both a shift in the leading edges (.1
quantiles) of the RT distributions, by as much as 100 ms, and a decrease in
the tails (.9 quantiles), by from 100 to 150 ms.
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Figure 10: Quantile probability functions for high- and low-proportion stimuli
for experiment 3.

The main question was whether the effects of stimulus proportion could
be explained by a change in starting point, a change in drift criterion, or
both. The shift in the leading edges of the RT distributions indicates a change
in starting point (see Table 1). The starting point was about one-third of the
distance between 0 and a, closer to the boundary corresponding to the
high-probability stimuli. This difference in starting point accounted for
most of the proportion effect. The drift criterion had only a modest effect
(see Table 2). For example, in the 35% coherence condition, its value changed
from high- to low-proportion stimuli by only about 10%. Fitting the model
to the data with the drift criterion varying from high- to low-proportion
stimuli increased the chi-square goodness of fit value by only 1%.

Error RTs are a little harder to interpret, because when there is a bias
toward movement in one direction, responses to the other direction are
slower. But the parameters representing variability across trials in drift rate
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and starting point are similar to those in experiment 2 and thus would
provide about the same predictions as for experiment 2 if an unbiased
condition were tested with these subjects.

4.4 Discussion of Experiments 1, 2, and 3. The three experiments
demonstrate how the components of processing identified by the diffusion
model work together to explain data. For all three experiments, the quan-
tile probability plots show that the model fit the data well, including the
right skew (approximately exponential) tails of the RT distributions and the
changes in the distributions across experimental conditions. The only sys-
tematic misses occurred in experiment 3 for the highly variable .9 quantiles
for error responses. In all three experiments, the shape of the RT distribu-
tions remained approximately constant, while experimental manipulations
changed only their location and spread. The right-skewed distributions
were similar to those typically found in two-choice experiments with hu-
man subjects but different from the symmetrical distributions found with
monkeys in the motion discrimination paradigm (Ditterich, 2006; Roitman
& Shadlen, 2002).

Stimulus difficulty was translated in the model into differences in the
quality of the evidence available from the stimuli to drive the decision
process (i.e., drift rate, Tables 1 and 2). The effects of speed versus accuracy
instructions, experiment 2, were translated into differences in the criterial
amounts of information required before a decision could be made (the
distances between 0 and a, Tables 1 and 2). In experiment 3, the effects of
varying the relative proportions of the stimuli were translated mainly into
differences in the starting point of evidence accumulation, accompanied by
a small effect on drift criterion. For all the conditions in all the experiments,
the best-fitting parameters of the model successfully predicted mean RTs
for correct and error responses, RT distributions, accuracy values, and the
changes in these dependent variables across experimental manipulations.
Also, the model can only accommodate, and the data only showed, patterns
in which changes in RT distributions across manipulations occurred in the
spreads or leading edges of the distribution, not their shape.

The model was successful despite the strong constraints placed on it by
the data. For stimulus difficulty, only drift rate varied, not any of the other
parameters, and for speed and accuracy instructions, only response criteria
varied. For stimulus proportion, only starting point and (to a minor degree)
drift criterion varied. In each experiment, the parameters representing the
nondecision components of processing (Ter ), the across-trial variability in
drift rate (η), the across-trial variability in starting point (sz), and the across-
trial variability in the nondecision component (st) were held constant across
the experimental conditions (i.e., they were not allowed to vary as a func-
tion of condition when fitting the model to the data). Boundary separation
was also held constant across conditions except in experiment 2 with speed
and accuracy instructions. Starting point was always halfway between the
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two boundaries except in experiment 3, where the relative proportions of
the stimuli were varied. The best-fitting values of all of these parameters
were reasonably consistent across the three experiments. The Ter values
were within 40 ms of each other, and the boundary separation values were
nearly the same (except with accuracy instructions in experiment 2). Esti-
mates of the across-trial variability parameters were less consistent. Ratcliff
and Tuerlinckx (2002) showed that these parameters are less accurately es-
timated than the other parameters. In part this is because the estimates of η

and sz depend on the relative speeds of correct and error responses, and RTs
are more variable for error than correct responses because there are fewer
error responses.

4.4.1 Motion Coherence and Drift Rate. A key consequence of the model’s
success in accounting for the data from experiments 1, 2, and 3 is that it
provides an economical interpretation of the effects of the various experi-
mental manipulations on components of processing, with the difficulty and
speed and accuracy manipulations each tied to only one component and
the proportion manipulation tied mainly to only one component. The com-
ponents dissociated from each other so that jointly manipulating speed and
accuracy instructions and difficulty, or stimulus proportion and difficulty,
had separable effects on drift rate, decision criteria, and starting point.

Separating drift rate from the other components of processing is essential
to developing a model for how motion coherence is encoded. Drift rate rep-
resents the quality, or strength, of the information available from a stimulus.
If a model for the processes that encode coherence produces appropriate
drift rate values, then the values can be translated through the diffusion
decision model into accurate predictions of performance (RT distributions
and accuracy levels). The model for encoding coherence might relate the
proportion of dots moving in the same direction to drift rate linearly, an
obvious possibility, or it might relate the proportions to drift rate nonlin-
early. Either way, the model can be tested by combining the predicted drift
rates with the other components of the decision process and comparing
the predictions to data. Figure 11 shows drift rates plotted as a function of
coherence for experiments 1, 2, and 3. The functions are almost linear, but
with a slight bend as coherence approaches 50%.

Palmer et al. (2005) modeled the motion discrimination task by assum-
ing, a priori, that the relation between coherence and drift rate was linear
(they checked the linearity assumption by allowing the relationship to be
a power function and then finding that this function was approximately
linear). Their model was a simplified diffusion model: there was no vari-
ability across trials in any of the components of processing, and the starting
point was fixed at halfway between the two boundaries. Under the as-
sumption that the relationship between drift rate and coherence was linear,
they estimated model parameters from accuracy and mean RT values for
correct responses alone, that is, without information about error RTs or the
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Figure 11: Response proportion, mean RT for correct responses, and drift rate
as a function of coherence. For the top and middle panels, the o’s are data,
and the x’s are predictions from the diffusion model. In the bottom panel, the
numerals 1, 2, and 3 refer to experiments 1, 2, and 3.

full RT distributions. The linear relation between drift rate and coherence
was expressed as drift rate = (k) (coherence level), where k is a constant.
It follows from the simplified diffusion model and the linear assumption
that the coherence value for the halfway point between accuracy at floor
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and accuracy at ceiling, 75% correct, is 0.55/(k a′), where a ′ = a/s, s is the
standard deviation of within-trial noise, and a is boundary separation. Sim-
ilarly, the halfway point between floor and ceiling RT is 1.92/(k a′). If these
two points can be estimated from data (as in Palmer et al.), then k and a′

can be estimated. Palmer et al.’s model successfully fit accuracy values and
mean RTs for correct responses. Palmer et al. did not provide predictions
for RT distributions, although they could be derived from their simplified
model using the full model with the variability parameters set to zero.
According to their model, error and correct RTs should be equal, but the
data were equivocal; on average, errors were slower than correct responses,
but the difference was not consistent across subjects. Overall, it is likely
that if the full diffusion model were applied to the same data as Palmer et
al.’s model, the parameter estimates for the main components of processing
(the nondecision component, drift rate, and boundary separation) would
be similar.

For comparison to Palmer et al.’s data, Figure 11 (top two panels) shows
accuracy and mean RT data from experiment 1 plotted against coherence on
a log scale, the same way Palmer et al. plotted their data. The x’s and lines
are the predicted values from the fits of the full model to the data, and the
circles are the data. The bottom panel shows drift rates plotted as a function
of coherence for experiments 1, 2, and 3. The plots show that Palmer et al.’s
linearity assumption is reasonable, although for experiment 1, where there
was a wider range of coherence values than experiments 2 and 3, there was
a slight systematic bend (that we have replicated in other experiments).

In contrast to the approach used by Palmer et al., explaining data with
the full diffusion model does not require any a priori assumption about the
relation between coherence values and drift rates. Palmer’s method would
not work if drift rate were not related to coherence by a linear function or
some other simple function, or if the starting point were not equally distant
from the response boundaries. In the full diffusion model, drift rates are a
by-product of successfully fitting the data. The coherence–drift rate relation
is constrained by all the aspects of the data and functions can be fit to the
form of the relationship. In particular, the relation is constrained because
it must encompass error RTs and full RT distributions, as well as accuracy
and RTs for correct responses.

Below, further examples of the utility of the diffusion model in abstract-
ing components of processing are reviewed. First, however, the model’s
explanations of performance in two other tasks are described and then its
relationship to the general class of sequential sampling models is reviewed.

5 Modeling the Response Signal and Go–No Go Tasks

Up to this point, the only two-choice procedure that has been discussed is
the standard procedure in which stimuli are presented and subjects indicate
which of two response categories they belong to. The diffusion model also
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offers successful accounts of data from the response signal and go–no go
procedures. In a response signal experiment, the time at which subjects re-
spond is controlled. When a stimulus is presented, it is followed by a signal
to respond (often a row of asterisks or a tone). Subjects are instructed to
respond as quickly as possible when the signal is presented. For example,
in motion discrimination, a row of asterisks might be the signal to respond,
and there might be five possible response signal lags (e.g., 50, 100, 400, 700,
or 1200 ms), with one of the five lags chosen randomly for each trial. Sub-
jects are encouraged to respond quickly at the signal (e.g., within 300 ms).
Because subjects respond at experimenter-determined times, the dependent
variable is accuracy. Typically the shortest lag is chosen so that accuracy is
at chance and the longest lag so that accuracy will be at ceiling.

The goal is to trace out the time course of processing. The top two panels
of Figure 12 show data from six conditions in a numerosity discrimination
experiment. The proportion of the “large number” responses is plotted
as a function of lag for each condition. Usually one of the experimental
conditions is selected as a baseline condition, and d′ values are computed for
each of the other conditions scaled against the baseline condition at each lag.
In the middle panel of Figure 12, condition 6 was selected as the baseline,
and d′ values were calculated for conditions 1, 2, and 3 in the top panel
(the X’s in the figure). d′ functions can usually be described as exponential
growth functions (the O’s in the figure). The choice of exponential functions
is not based on any theoretical modeling framework; they are used because
they provide a useful description of the data for testing hypotheses about
processing.

In early applications of sequential sampling models to response signal
data, it was assumed that the diffusion process proceeds without any deci-
sion boundaries. In order to make a decision at some response signal lag,
the position of the process relative to the starting point was used to make
a response: if the amount of accumulated evidence was above the starting
point, respond with one choice; if below, respond with the other choice
(Ratcliff, 1978; Usher & McClelland, 2001).

More recently, Ratcliff (1988, 2006) explained response signal data by as-
suming implicit decision boundaries—the same boundaries that would be
used in the standard two-choice procedure. If, when the response signal is
presented, the diffusion process has already terminated at one or the other
of the implicit boundaries, then that is the decision made. If the diffusion
process has not terminated at a boundary, then there are two possibilities:
either the decision is based on guessing or on which boundary the accu-
mulated evidence is closest to, that is, it is based on partial information.
Implicit boundaries and the probabilities of responses are illustrated in the
bottom panel of Figure 12 (along with the partial information assumption).
At time T, terminated processes are those above the a boundary or be-
low the 0 boundary, while nonterminated processes are those between the
boundaries. The probability of an A response is the probability of processes
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Figure 12: The response signal procedure, data, and diffusion model explana-
tions. The top panel shows response proportion as a function of response signal
lag from a numerosity discrimination experiment (Ratcliff, 2006) in which sub-
jects judged whether the number of dots in a 10 × 10 array was greater than 50
or less or equal to 50. The eight lines represent eight groupings of numbers of
dots (e.g., 13–20, 21–30, 31–40, 41–50, 51–60, 61–70, 71–80, and 81–87 dots). The
middle panel shows d ′ increasing as a function of lag for three well-separated
positive conditions, where d ′ is the difference in z-scores between each of the
three conditions and a baseline condition (condition 6 from the top panel). The
bottom panel shows how the diffusion model accounts for response signal data.
The proportion of A responses at time T is the sum of processes that have termi-
nated at the A boundary (the black area above the boundary) and nonterminated
processes (the black area still within the diffusion process).
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terminated at the A boundary (the upper black area in the figure) plus the
probability the diffusion process is above the starting point (the other black
area in the figure). The other assumption is that partial information is not
available, and responses are based on terminated processes plus a guess for
the processes not terminated.

Ratcliff (2006) collected data from the same subjects with both the stan-
dard procedure and the response signal procedure and fit the data from
both simultaneously (all earlier response signal studies had not tried to
fit both kinds of data simultaneously). The older version of the diffusion
model, the one without boundaries, failed to account for the data, but the
version with implicit boundaries was equally successful whether nonter-
minated processes were assumed to lead to decision based on guesses or
on partial information.

Implicit boundaries are also assumed to explain data from the go–no
go procedure. In this procedure, subjects are asked to make a response to
a stimulus if it belongs to one of the possible response categories but to
withhold responses to the other. For example, for motion discrimination,
they might be asked to make a response to a right-moving stimulus and
asked to not make a response to a left-moving stimulus (or vice versa).
Gomez, Ratcliff, and Perea (2007) collected data from the same subjects for
the standard and the go–no go procedures for lexical decision, numerosity
judgments, and a recognition memory task. They tested a version of the
diffusion model with an implicit boundary for no-go decisions and a version
with no boundary for no-go decisions. Just as with the response signal
procedure, the model fit the data well when an implicit boundary was
assumed but not when no boundary was assumed.

The success of the diffusion model across the standard procedure, the
response signal procedure, and the go–no go procedure derives from the
model’s ability to explain both RT and accuracy data; it unifies the depen-
dent variables. A model that predicted only accuracy and not RTs could
potentially explain data from the response signal paradigm but not the
RTs from the standard and go–no go paradigms. A model that predicted
only RTs could potentially explain data from the standard and go–no go
paradigms but not the response signal paradigm. Currently, there are no
models other than the diffusion model (and similar sequential sampling
models) that can successfully encompass the data from these different ex-
perimental procedures.

6 Other Sequential Sampling Models

The diffusion model is a member of the general class of sequential sam-
pling models, and so the question arises as to whether other models of
the class could equally well accommodate the data of experiments 1, 2,
and 3 as well as data from other two-choice studies. Broadly, there are two
subclasses of sequential sampling models for simple two-choice tasks. The
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diffusion model and other members of its subclass assume a single quantity
of evidence from a stimulus; positive evidence for one of the alternative re-
sponses is simultaneously negative evidence for the other alternative (and
vice versa). Models in the other subclass, accumulator models, assume that
evidence accumulates in two separate accumulators—one for each of the
responses (LaBerge, 1962). Evidence toward one response does not subtract
from evidence for the other. In these models, a response is initiated when
the total amount of evidence in one or the other of the accumulators reaches
its criterion. In early models of this type (reviewed by Vickers, Caudrey, &
Willson, 1971; Luce, 1986), evidence could accumulate only positively, that
is, the amounts of evidence in the accumulators could not decrease (e.g.,
Pike, 1966, 1973; Vickers, 1970). These models failed on a number of grounds
(see Ratcliff & Smith, 2004, for details).

More recent accumulator models implement two or more diffusion pro-
cesses (e.g., Bogacz et al., 2006; Ratcliff, Hasegawa, et al., 2007; Ratcliff &
Smith, 2004; Usher & McClelland, 2001) and they allow the evidence in the
accumulators to decrease, due to random noise and, in some cases, inhi-
bition from one process to another. The recent accumulator models have
not been tested on as many paradigms as the diffusion model or on data
from large numbers of individual subjects (partly because implementing
the models is computationally intensive). However, comparisons between
predictions of the models (Ratcliff & Smith, 2004) and comparisons of the
models using empirical data (Ratcliff, Thapar, Smith, & McKoon, 2005) in-
dicate that they may be as successful as the single process diffusion model
that has been discussed in this article.

7 Isolating Components of Processing

Experiments 1, 2, and 3 illustrate interleaved goals for the diffusion model.
First, the model provides an accurate qualitative and quantitative account
of the data from two-choice decision tasks. The model’s predictions for RT
means, distributions, and accuracy values are all close to the values ob-
tained in the experimental data, and the changes in these dependent vari-
ables across experimental conditions are well accommodated as changes in
accuracy and shifts and spreads of the RT distributions, with only minor
changes in distribution shape.

Second, given the close fit of the model to data, RT and accuracy measures
are decomposed by the model into components of processing. An exper-
imental variable can affect performance in complex ways, yet the model
can explain how the variable uniquely affects each of the components of
processing that underlie performance. Centrally, the model allows the qual-
ity of the information available from a stimulus to be separated from the
diffusion decision process that operates on that information to produce
a decision. This allows processes operating prior to the decision process
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(e.g., perception, memory, lexical processing) to be modeled separately from
the decision process, including interactions among the processes.

It is important to note that experiments 2 and 3 provide strong support
for the assumption that the decision process is a diffusion process that
separates evidence from the other components of processing identified by
the model. Both the manipulation of speed and accuracy instructions and
the manipulation of the proportions of one versus the other response have
strong effects only on the decision criteria in the model, thus separating the
decision process from other components.

Third, and again given the close fit of the model to data, the effects of
experimental variables on performance and underlying components of pro-
cessing can be investigated for individual subjects and classes of subjects.
In current research, the model has been used to examine the effects of age,
aphasia, and depression on cognitive processing. Also, several studies have
used the diffusion model to investigate the extent to which components of
processing are correlated across tasks for individual subjects. These studies
are summarized below.

An important goal for the decision model is to provide a meeting point
between theories. A complete explanation of performance in the motion
discrimination paradigm, for example, requires a model that explains how
dot motion is encoded to produce a perceptual representation that drives a
decision process. In experiments 1, 2, and 3, the data were well explained
with coherence nearly linearly related to drift rate, that is, the quality of
information on which the decision is based. Thus, a model for dot mo-
tion encoding has a relatively straightforward task. The representation it
produces must drive the diffusion decision process to produce the correct
values for accuracy and RT distributions.

Another goal for the model is to bring attention to the dangers of
developing models that do not fully and explicitly incorporate decision
processes. Performance—RT and accuracy—is not a direct reflection
of encoding processes or decision processes or any other component of
processing. Instead, performance reflects the interactions and combinations
of multiple components. The diffusion model offers one possible, and
empirically well-supported, method of subtracting out decision process
effects in order to better see underlying stimulus information effects and
decision criterion effects.

As an example, consider the lexical decision task, in which letter strings
are presented and subjects are asked to respond for each string “word” or
“nonword.” Quite elaborate models of lexical access have been developed
based on mean RTs for correct word responses in this task (e.g., Coltheart,
Davelaar, Jonasson, & Besner, 1977; Forster, 1976; Morton, 1969; Paap,
Newsome, McDonald & Schvaneveldt, 1982). Recently, however, Ratcliff,
Gomez, et al. (2004) used the diffusion model to subtract out decision pro-
cesses in order to more clearly see the relations among various types of
word and nonword stimuli and how they are encoded. Ratcliff el al. found
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that a relatively simple hypothesis about lexical encoding accounts for all
the aspects of lexical decision data (accuracy values and RT distributions
for correct and error responses for words and nonwords). Specifically, the
hypothesis is that encoding a letter string produces a value of how wordlike
the string is. High-frequency words are more wordlike than low-frequency
words, and pronounceable nonwords are more wordlike than random letter
strings (e.g., nerse versus xhwut). The wordlikeness value of a letter string is
translated to drift rate as input to the decision process. This interpretation of
lexical decision performance is simpler than most other views. It assumes
a straightforward matching process between the stimulus letter string in
short-term memory and lexical information in long-term memory.

7.1 Modeling Decision Criteria and Likelihood Ratio Models. Cur-
rently, diffusion model analyses do not explain how subjects set criterion
settings. There have been some proposals about how to model such settings
(e.g., Bogacz et al., 2006; Triesman & Williams, 1984). But no current account
can explain how human subjects set or calibrate criteria such that they are
accurate on the first trial of an experiment using information presented only
in verbal instructions (Ratcliff et al., 1999). Neither can current accounts (e.g.,
Bogacz et al., 2006), explain criterion settings when no accuracy feedback
is provided. Experiments without feedback are common, especially with
populations of older subjects or memory-impaired subjects. It is our belief
that a significant component of criterion setting is based on a subject’s his-
tory of decision making. In other words, for human subjects, reinforcement
history in the experiment is not sufficient to explain a subject’s criterion
settings. In experiments with animal subjects, it is much more likely that
the reinforcement history would be able to account for criterion setting.

The fact that human subjects can calibrate quickly based on verbal in-
structions has implications for likelihood-based models of decision making
(e.g., Gold & Shadlen, 2001; Stone, 1960). In a likelihood-based model, the
quality of a perceptual representation or information from memory pro-
duces a value on a continuum, and the likelihood of that value drives the
decision process. Specifically, likelihood is the ratio of the probability den-
sity of the obtained value being a target and the probability density of the
obtained value being a distractor. The problem is that human subjects with
verbal instructions can calibrate in one trial, clearly not enough time to
compute probability distributions for stimulus representations for positive
and negative items. It requires thousands or tens of thousands of trials to
estimate probability density functions by sampling observations from the
distributions. For example, for a normal distribution, it takes 100 trials to
get five observations (on average) beyond two standard deviations, and it
would take 1000 trials to get three observations (on average) beyond three
standard deviations. Even with 1000 observations, the density outside three
standard deviations would be estimated poorly. Numbers of trials like these
are not obtained for human subjects in most experiments.
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Gold and Shadlen (2001) show that if the distributions of step size are
normal, then the likelihood model is equivalent to a distance from the
criterion model. We believe that the latter is plausible, but the likelihood
model is not. However, for other models such as dual diffusion models with
a lower bound of activation (e.g., Usher & McClelland, 2001) or models with
position-varying step sizes (e.g., Ornstein-Uhlenbek models), it is not clear
that there will be any equivalence between likelihood-based models and
distance from the criterion models.

8 Applications of the Diffusion Model

The diffusion model has only recently come to be used as a tool for isolating
component processes in cognitive tasks, but its initial success encourages
future applications across widely varying tasks and subject populations. In
this and the next sections, applications designed to isolate decision criteria,
encoding processes, and drift rates are reviewed. The topics include aging,
aphasia, short-term memory, categorization, and visual processing. Then,
in the last section of the reviews, possible neural underpinnings of the
diffusion decision process are described.

8.1 Individual Differences and Correlations Between Model Parame-
ters and Data. In one of our programs of research (e.g., Ratcliff et al., 2001;
Ratcliff, Thapar, & McKoon, 2003, 2004; Ratcliff, Thapar, & McKoon, 2006a,
2006b; Ratcliff, Thapar, Gomez, et al., 2004; Thapar et al., 2003), the diffusion
model was fit to 18 data sets with between 30 and 40 subjects in each set,
so we were able to examine correlations among mean RT, accuracy, and the
model’s components of processing across subjects. The consistent results
across the 18 data sets were that accuracy was correlated with drift rate,
and mean RT was correlated with boundary separation. In other words,
the more accurate the subject, the higher was drift rate, and the slower the
subject, the more widely separated were boundaries. Also in most of the
studies, mean RT was correlated with the nondecision component of pro-
cessing. There were no significant correlations between accuracy and mean
RT, accuracy and boundary separation, mean RT and drift rate, or drift rate
and boundary separation. These results suggest that across individuals, the
values of the components of processing represented by drift rate (quality of
evidence entering the decision process) and boundary separation (evidence
needed to make a decision) are relatively independent of each other.1

1It is important to note that the correlations discussed in this paragraph, correlations
between parameter values and data across subjects, are different from and provide differ-
ent information from the correlations among parameter values that result from variability
in data. For example, if random sets of data are generated from a straight line (each data
point normally distributed) and the straight line is fit to the data, the slope and intercept
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8.2 Correlations Across Tasks in Component Processes for Individual
Subjects. For individual subjects, it is reasonable to assume that their per-
formance does not change dramatically across tasks of the sort described
in this review, or at least less than, it might change less than performance
from one individual to another. Most things being equal, an individual who
is fast at stimulus encoding and response execution on one task is likely to
be fast in those components on other tasks. An individual who sets conser-
vative criteria on one task is likely to be conservative on other tasks. The
diffusion model provides a means of examining across-task performance
issues like these. For example, Ratcliff et al. (2006a) used the model in this
way to investigate performance on four two-choice tasks for subjects of
three age groups: college age, 60 to 74 year olds, and 75 to 85 year olds (10
subjects per group). They found that for all of the subjects in all three groups,
there were significant correlations across the four tasks in individuals’ cri-
teria settings (r = .32), their Ter values (r = .47), and, perhaps surprisingly,
their drift rate values (r = .37). These results argue for consistent individual
differences across these simple two-choice tasks.

8.2.1 Effects of Aging. For some time, it has been known that older adults
(those 65 to 90 years old) are slower in two-choice tasks than young adults
(college students). It was usually assumed that this slowdown in perfor-
mance was the result of a general slowdown in all cognitive processes.
However, recent diffusion model analyses of two-choice data from a num-
ber of tasks (six experiments with 30 or more subjects in each of three age
groups per experiment) show that the slowdown is almost entirely due to
older adults’ conservativeness. To avoid errors, they set their decision crite-
ria significantly further from the starting point of the decision process than
young adults do. Counter to the previously held view, in most tasks, the
quality of the information on which decisions are based (i.e., drift rate) is not
significantly worse for the older than the young adults in the tasks we stud-
ied (Ratcliff et al., 2001, 2003, 2004, 2006a, 2006b; in press; Ratcliff, Thapar, &
McKoon, 2003, 2004; Thapar, Gomez, et al., 2004; Spaniol, Madden, & Voss,
2006; Thapar et al., 2003).

8.2.2 Effects of Aphasia. In lexical decision, patients with aphasia, like
older adults, perform more slowly than control subjects. Diffusion model

are negatively correlated (Ratcliff & Tuerlinckx, 2002, Figure 5). Such correlations that
can be obtained from fitting simulated data sets reflect covariances in the structure of the
model (or from the Hessian matrix, which for this model would have to be computed
numerically). For example, if just one data point was high or low, then the best fit (that
result from the model parameters being adjusted to accommodate the data point) would
result in a number of the parameters being higher than the values used to generate the
fits (Ratcliff & Tuerlinckx, 2002, Figure 6). This results in positive covariances in the pa-
rameters. The sizes of the effects that go into these correlations are much smaller than the
sizes of the differences across subjects.
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analyses show that this comes about because they set more conservative
criteria and have longer nondecision times (Ratcliff, Perea, et al., 2004). The
differences in these components between aphasic subjects and normal sub-
jects are considerably larger than the differences between college students
and 60- to 75-year-old subjects. Surprisingly, and in testament to the utility of
the diffusion model in isolating component processes, the mean difference
in drift rates between the aphasic patients and the normal control subjects
was small. The suggestion, consistent with claims by Buchanan, McEwen,
Westbury, and Libben (2003), is that lexical knowledge is relatively intact in
aphasic patients.

The applications summarized here outline how the diffusion model can
be used to explore individual differences in a variety of domains and per-
haps provide important contributions to the individual difference literature.
Because the model can be applied to individual subjects, it avoids issues
of averaging data across subjects, a crucial feature when individuals might
show different patterns of performance.

9 Coupling Perception and Memory Models with the Diffusion
Model

9.1 Short-Term Memory for Order Information and Drift Rate. A
straightforward illustration of an encoding model–decision model com-
bination was developed by Ratcliff (1981) for the representation of letter
strings in short-term memory. In the task to be modeled, pairs of letter
strings (five letters in length) were presented sequentially to subjects, and
the subjects were asked to decide whether the strings were identical. The
first string of a pair, flashed quickly, was assumed to reside in short-term
memory at the time the second test string was presented. The pairs of in-
terest were those that differed by either one or two letters. If a letter from
the memory string was replaced in the test string by a new letter, then the
difficulty of the decision depended on the position of the replaced letter—
more difficult if it was in the middle than the ends of the string. When two
letters were transposed from one to the other of the two strings, difficulty
depended on the distance between the letters as well as on the letters’ posi-
tions. For example, transposition of two adjacent letters was more difficult
than transposition of farther-apart letters, and transpositions involving the
first letter were less difficult than transpositions involving a middle letter.
Ratcliff applied the diffusion model to these data and found that the model
could successfully account for the data, an impressive feat given the large
numbers of conditions (all the possible ways to replace or transpose letters
between two strings). Most interesting was that the differences in perfor-
mance across conditions were attributable solely to variations in drift rate.

Ratcliff interpreted drift rate as a measure of the degree to which the
second, test letter string matched the first, short-term memory string: a
higher value of drift rate indicated a higher degree of match. To produce
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the appropriate values of match, Ratcliff (1981) proposed an overlap model.
For both the test string and the short-term memory string, it was assumed
that the representation of each letter was distributed over positions in the
letter string, with the distribution assumed to be gaussian with the mean
centered on the letter position and the standard deviation a parameter of the
model. For each letter, there was some overlap with each of the five possible
positions. A middle letter, for example, would have a large overlap with
the middle position (center of the gaussian) and a much lower overlap
with the end positions (the tail of the gaussian). For a test pair of strings,
the degree of match between them was defined as the amount of overlap
between their distributed representations. This reasonably concise model
for the representation of letter strings in short-term memory was able, when
combined with the diffusion decision model, to correctly predict the full
range of accuracy and RT data.

9.2 Early Visual Processing and Drift Rate. In the model as it has been
described up to this point, it has been assumed that the value of drift rate is
constant as the diffusion process proceeds from starting point to boundary.
Ratcliff and Rouder (2000) explicitly investigated this assumption for letter
discrimination. In their experiments, one of two letters was flashed briefly
(10–40 ms) and then masked. There are two possibilities for the effect of
masking. It could be that the value of drift rate is not constant; instead it
increases from onset of the letter to onset of the mask and then becomes zero.
This predicts dramatically slower errors than correct responses because
for a process to produce an error, it has to move from the new average
position, which is near the correct boundary, to the incorrect boundary. The
second possibility is that drift rate is constant. It is determined by a memory
representation of the stimulus that, after only a short initial rise, is constant,
not erased by the mask. In this case, drift rate is constant over time, and so
error RTs have the same relation to correct RTs as in all the applications of
the model discussed above. In other words, error RTs are not dramatically
slower than correct RTs. Ratcliff and Rouder found that data were best fit by
the second, constant drift rate, assumption. This finding has been replicated
in all of the experiments in which the effects of stimulus duration have been
examined via the diffusion model (Ratcliff, 2002; Ratcliff & Rouder, 2000;
Ratcliff, Thapar, & McKoon, 2003; Thapar et al., 2003). The conclusion is that
information from a briefly displayed, masked stimulus quickly establishes
a memory representation that supplies a constant value of drift rate to the
decision process.

9.3 Early Visual Processing, Attention, and Drift Rate. Smith, Ratcliff,
and Wolfgang (2004) proposed a significantly more comprehensive account
of the connection between early visual processing and decision processes
than Ratcliff and Rouder (2000). They examined the effects of contrast,
attention, and masking on a simple orientation judgment. The stimuli were
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Gabor patches oriented in one of two directions, and subjects were to judge
the orientation. Stimuli could be presented in one of four locations, and
prior to stimulus onset, one position was cued as more likely than the others.
Performance was better for a stimulus that appeared in the expected, that
is, the attended, location than an unattended location. Also, performance
was better for higher-compared to lower-contrast stimuli and better for not
masked than masked stimuli.

Smith et al. (2004) combined a model of the effects of attention on early vi-
sual processing with the diffusion decision model. For the visual processing
model, there were five assumptions: a stimulus produces a representation in
a visual short-term memory representation; the onset of information in this
representation is delayed for unattended compared to attended locations
because attention has to move from the attended to the unattended location;
if a stimulus is masked, the buildup of information in the representation
stops when the mask is presented; after the initial buildup of information,
the representation is stable (as in Ratcliff & Rouder, 2000); and the strength
of the representation is a function of stimulus duration and contrast. The
combination of a visual processing model based on these assumptions and
the diffusion decision model provided a successful account of the data from
all of the conditions formed by crossing all of these variables.

The important point from this example is that all of the interacting in-
dependent variables, common ones in the perception literature, and their
effects on all of the dependent variables were explained by integrating a
visual processing model consistent with current views on attention and
masking with the diffusion decision model. The visual processing assump-
tions provided a model of drift rate and hence a meeting point between
perception and decision.

9.4 Categorical Information and Drift Rate. Nosofsky and Palmeri
(1997) and Ashby (2000) combined models for the representation and pro-
cessing of categorical information with a sequential sampling decision pro-
cess. In both of their models, a stimulus is assigned to one or the other of
two categories according to how well it matches information in memory.
In Nosofsky and Palmeri’s model, a stimulus is matched against exemplars
of the two categories. In Ashby’s model, a stimulus is assumed to vary
on several perceptual dimensions, and its representation on these dimen-
sions is matched against memory. In both models, two-choice categorization
decisions are made via a sequential sampling decision process. Evidence
is accumulated over time toward decision boundaries—one boundary for
each category.

In more detail, in Nosofsky and Palmeri’s (1997) model, each time over
the course of an experiment that a stimulus is presented, a representation
of it is stored in memory, and these exemplars can be retrieved for use in
decisions about later stimuli. The rate at which an exemplar is retrieved is
a function of its strength in memory and its similarity to the stimulus. Each
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retrieved exemplar drives the decision process one step toward the category
boundary to which the retrieved exemplar belongs. The difficulty of stimuli
is varied by the frequency with which exemplars of their category are
presented in an experimental session and by the similarities of the stimuli.

In Ashby’s model, the representation of a stimulus is assumed to vary
on several perceptual dimensions. How strongly a stimulus belongs to one
or the other of the response categories depends on where it lies in the mul-
tidimensional stimulus space; the closer to the line that divides the space
into two categories, the weaker the evidence for membership in the cate-
gories. Evidence is accumulated on each of the dimensions by a diffusion
process. Two decision boundaries are placed in the multidimensional space,
and evidence is accumulated until one or the other is reached. Because dis-
tance from each decision boundary is one-dimensional, this reduces to the
standard diffusion process.

In both Nosofsky and Palmeri’s (1997) and Ashby’s (2000) proposals,
a model of categorization processing produces a measure of the match
between a stimulus and the two response categories, and this match drives
a random walk or diffusion decision process. Thus they offer two different
ways of linking a stimulus representation model to a sequential sampling
decision process.

10 Does the Diffusion Process Reflect Neural Activity?

As information from a stimulus is accumulated toward one or the other of
the two responses in a two-choice task, the path is extremely noisy. Before
culminating at a decision boundary, the total evidence accumulated can
move far below the starting point and far above it. This variability over
time in the diffusion process is evocative of the variability that occurs over
time in neural firing rates.

One way the connection between diffusion processes and neural activity
has been pursued is to simultaneously collect behavioral data and single-cell
recording data. Beginning with Hanes and Schall’s pioneering work (1996)
and Shadlen and colleagues’ (e.g., Gold & Shadlen, 2001) efforts to integrate
diffusion processes and neural decision making, research in this area has
rapidly advanced (Ditterich, 2006; Gold & Shadlen, 2001; Hanes & Schall,
1996; Huk & Shadlen, 2005; Mazurek, Roitman, Ditterich, & Shadlen, 2003;
Roitman & Shadlen, 2002; Schall, 2003). Also, studies using event-related
potential (Philiastides, Ratcliff, & Sajda, 2006) and fMRI measures (Heek-
eren, Marrett, Bandettini, & Ungerleider, 2004) are beginning to appear.
The general questions are whether and how the components of process-
ing recovered from behavioral data by the diffusion model or other recent
sequential sampling models correspond to the physiological measures.

Research aimed at these questions is illustrated in a recent experiment
by Ratcliff, Cherian, et al. (2003). Monkeys were trained to discriminate
whether the distance between two dots was large or small, indicating their
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responses by left versus right eye movements. Which response was correct
was probabilistic, defined by the history of rewards for correct responses in
the experimental sessions. As the monkeys performed the task, data were
collected from cells identified as buildup (or prelude) cells in the superior
colliculus. The aim was to test whether the decision process and the firing
rates (aggregated over individual cells and trials for each cell) were linked
such that the closer the diffusion process to a decision boundary, the higher
the firing rate of a cell. Ratcliff et al. applied the diffusion model to the
behavioral data, fitting the data adequately and obtaining the values of the
parameters that best fit the behavioral data. Then, using these parameter
values, sample diffusion paths were generated, each path beginning at the
starting point of the diffusion process and ending at a response boundary.
These paths were averaged and the average was compared to the average,
across cells and trials, of the firing rates of the buildup cells. The finding
was that the average path closely matched the average neural firing rate.
As the average path approached a decision boundary, the average firing
rate increased.

The connection between the behavioral data and the neural data was
supported by a counterintuitive feature of the data. The neural firing data
were split into three groups: those for which the eye movement response
was in the fastest third of responses, the intermediate third, or the slowest
third. Measuring from the time of onset of a stimulus, the firing rate function
for the intermediate responses was shifted in time relative to the function for
the fastest responses, and the function for the slowest responses was shifted
again relative to the intermediate responses. The shifts were as large as 100
ms across the experimental conditions. The shifting is counterintuitive be-
cause on average, one might expect the evidence in the diffusion process
to increase gradually over time from starting point to decision boundary.
However, the model predicts exactly the shifted patterns of firing rates be-
cause of the extremely large amount of noise in the diffusion processes. The
noise has the consequence that processes that get near a decision criterion
likely hit the criterion (noise makes them hit the criterion). So for a process
to have failed to reach a criterion for a long time, it must have remained near
the starting point. Therefore, the average paths for intermediate relative to
fastest, and slowest relative to intermediate, processes have to remain near
the starting point, accelerating to the decision criterion just before the re-
sponse (see also Ratcliff, 1988). This delay followed by acceleration leads to
the shifts in the firing rate functions.

In Ratcliff et al.’s experiments, recordings from cells that increased firing
for one of the response categories were compared to recordings from cells
that increased firing for the other of the response categories. The diffusion
model accounted for the difference between the firing rates of the two types
of cells, but not for the firing rates of the cells themselves.

To model the two types of cells separately, Ratcliff, Hasegawa, et al. (2006)
proposed a dual diffusion model. In this model, evidence is accumulated
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separately for the two response alternatives as in the accumulator models
described above (e.g., Usher & McClelland, 2001). For each alternative,
evidence accumulation is a diffusion process. The amount of evidence at
any given point in the process is subject to decay as a function of the amount
of evidence in the accumulator. This model fits all the same data as the
standard diffusion model described in the rest of this review. Its advantage
is that it predicts the firing rates for the cells that respond in favor of
one of the two types of stimuli and for the cells that respond in favor of
the other type. Ratcliff, Hasegawa, et al. showed that the model provided
reasonably good fits to the behavioral data, and they used the best-fitting
values of the parameters to generate predicted paths for the two types of
cells separately (see also Mazurek et al., 2003). The averages of the predicted
paths corresponded closely to the averages of the cells’ firing rates. In
particular, the predicted paths showed the shift in firing rate functions
from the fastest to the intermediate to the slowest thirds of the responses.

Besides these developments, there have been theoretical advances that
attempt to produce models based on populations of spiking neurons, mod-
eling the physiological behavior of neurons, synapses, and neurotransmit-
ters (e.g., Lo & Wang, 2006; Wang, 2002; Wong & Wang, 2006). The models
represent the functional architecture of the processing systems involved in
making simple decisions and aim to account for physiological data from
single neurons to populations while at the same time being consistent with
behavioral data. One aspect of this modeling approach is to examine to
what extent the behavior of populations of such units approximates diffu-
sion processes (see Mazurek & Shadlen, 2002; Wong & Wang, 2006).

Specifically, Wong and Wang (2006) developed a spiking neuron model
within a dynamical systems framework for perceptual decisions of the kind
presented in experiments 1 to 3 above. They worked through a series of
approximations including averaging over populations of neurons, approxi-
mating input-output relationships with linear functions and approximating
slowly varying activity of some subpopulations of neurons with constant
activity. The result is a simple two-unit system with self-excitation and mu-
tual inhibition that corresponds to a dual diffusion model (e.g., Usher &
McClelland, 2001). This is just one example of the advances in the theoreti-
cal literature that might provide an account of how diffusion models arise
from approximations to physiologically based processes.

In the neural and functional architecture of the decision system, there are
several modalities in which decisions can be expressed, such as eye move-
ments, hand, foot, finger, head, or other limb movements, vocal responses,
and so on. It is possible that each of these will implement a diffusion-like
process in which evidence is accumulated in pools of neurons to criterial
activity, at which time an overt response is initiated. There are many pos-
sible stimulus modalities, for example, any of a number of possible visual,
auditory, tactile, smell, taste, stimulus types, as well as stimuli that require
higher-level processes, for example, memory, language, and so on. Evidence
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from each of these possible stimulus types from the brain areas performing
the computations that provide discriminative information must be able to
be directed to the system that is implementing the decision. From this point
of view, the decision process is a collecting point for evidence from many
different processing systems, and this decision process is responsible for
implementing the overt decision. Of course, this does not relegate decision
processes to the very latest output stages of processing; decisions must be
made internally in more complex tasks, for example planning, complex
decision making, and reasoning. However, despite the possible complexity
of these processing systems, simple animal models have a central place in
understanding the neural systems that implement overt decisions.

11 Conclusion

It has probably not been realized in the wider scientific community that the
class of diffusion models has as near to provided a solution to simple deci-
sion making as is possible in behavioral science. The models are constrained
and yet have been successfully fit to many data sets, including data from a
large number of individual subjects. They have proved useful in interpret-
ing experimental results that are getting close to issues that have practical
importance, for example, aging and speed of processing and aphasia. They
have also provided a strong link between behavioral and neural decision
making and provide a strong theoretical common language for these two
domains. This review has presented the standard diffusion model in detail
and has attempted to explain how it works, along with application to new
experimental data using the motion coherence paradigm.
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