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A Theory of Memory Retrieval

Roger Ratcliff
University of Toronto, Ontario, Canada

A theory of memory retrieval is developed and is shown to apply over a range
of experimental paradigms. Access to memory traces is viewed in terms of a
resonance metaphor. The probe item evokes the search set on the basis of
probe-memory item relatedness, just as a ringing tuning fork evokes sympa-
thetic vibrations in other tuning forks. Evidence is accumulated in parallel from
each probe-memory item comparison, and each comparison is modeled by a
continuous random walk process. In item recognition, the decision process is
self-terminating on matching comparisons and exhaustive on nonmatching com-
parisons. The mathematical model produces predictions about accuracy, mean
reaction time, error latency, and reaction time distributions that are in good
accord with experimental data. The theory is applied to four item recognition
paradigms (Sternberg, prememorized list, study-test, and continuous) and to
speed-accuracy paradigms; results are found to provide a basis for comparison
of these paradigms. It is noted that neural network models can be interfaced to
the retrieval theory with little difficulty and that semantic memory models may
benefit from such a retrieval scheme.

At the present time, one of the major
deficiencies in cognitive psychology is the lack
of explicit theories that encompass more than
a single experimental paradigm. The lack of
such theories and some of the unfortunate
consequences have been discussed recently by
Allport (1975) and Newell (1973). Two im-
portant points are made by Newell: First,
research in cognitive psychology is motivated
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and guided by phenomena (e.g., those of the
Sternberg paradigm and the Brown-Peterson
paradigm). Second, attempts to theorize
result in the construction of binary oppositions
(e.g., serial vs. parallel, storage vs. retrieval,
and semantic vs. episodic). Thus, an appre-
ciable portion of research in cognitive psychol-
ogy can be described as testing binary opposi-
tions within the framework of a particular
experimental paradigm. This style of research
does not emphasize or encourage theory con-
struction; but without theory, it is almost
impossible to relate experimental paradigms
or to substantiate claims that the same pro-
cesses underlie different experimental para-
digms. Furthermore, the concern with binary
oppositions tends to obscure the more inter-
esting aspects of data, such as the form of
functional relations.

The theory presented in the present article
is concerned with providing an account of
processes underlying retrieval from memory.
Perhaps the most intensively investigated class
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of memory retrieval paradigms has been the
item recognition paradigms, for example, the
Sternberg paradigm (Sternberg, 1969b), the
study-test paradigm (Murdock & Anderson,
1975), the continuous recognition memory
paradigm (Okada, 1971), and the premem-
orized list paradigm (Burrows & Okada, 1975).
In this area of research, several models have
been developed to deal with results from each
paradigm, but each model is inconsistent with
some data (Ratdiff & Murdock, 1976; Stern-
berg, 1975). Also, the models are paradigm
specific and do not generalize across paradigms.
The theory presented here has been designed
to deal with all aspects of the data in each
paradigm (accuracy, response latency, and
latency distributions) and has been designed
to apply over a range of paradigms. In the
first section, a qualitative account of the theory
is presented; in the second section, the mathe-
matical model is introduced and briefly de-
scribed. The article is written so that an under-
standing of the mathematics is not necessary
for comprehension of the theory. A complete
development of the mathematical model is
presented in the Appendix. In the third sec-
tion, the theory is applied to five experimental
paradigms, in which both response latency
and accuracy are measured, and the same set
of processing assumptions is used to account
for performance in all of the paradigms. The
fourth section relates the theory to neural
network models, semantic memory models,
and propositiomal models,

A Description of tie Theory

In this section, I present an overview of what
I term the r^mmal theory. I have mot presented
any mathematical development in this section
in order to give a qualitative account of the
theory, which cam be understood independently
of the mathematical formulation.

Let us consider a typical item recognition
task in which & group of items in memory has
been designated the memory search set and a
single probe item is presented for testing.
According to the theory, the probe is encoded
and then compared with each item in the search
set simultaneaimsly (ie., in parallel). Each
individual comparison is assumed to be ac-
complished by a random walk (more speci-
fically, a diffusion) process. A decision is made

when any one of the parallel comparisons
terminates with a match (self-terminating on
positives) or when all of the comparisons
terminate with a nonmatch (exhaustive on
negatives). When a decision has been made, a
response is initiated and performed. Figure 1
illustrates the overall retrieval scheme.

Search or Evoked Set

In some models developed to account for
item recognition data, it is assumed that the
only memory items accessed in the comparison
process are the items in the experimenter-
designated search set, that is, the positive set
(Schneider & Shiffrin, 1977; Sternberg, 1966).
There is a problem with such models because
it can be shown that items outside this positive
set may be accessed. For example, Atkinson,
Herrmann, and Wescourt (1974) report two
experiments in which the recency of negative
probes was manipulated. The first used a
Sternberg (1966) procedure. Subjects were
presented with a memory set of either 2, 3, 4,
or 5 words, which was followed by a probe
word. It was found that latency of response to
a negative probe word was greater and its
accuracy lower the more recently it had oc-
curred. The second experiment used a 25-word
study list and a 100-word test list with no
repeated negatives. After 50 test words, sub-
jects were required to read written instructions;
10 words in the instructions served as negative
items in the remainder of the test list. Latencies
for the negative items that had been in the
instruction set were significantly longer than
latencies for other negative items. Therefore,
to explain the processes involved in item
recognition, a model must include some
mechanism that allows items from outside
the experimenter-designated search set to be
accessed in the comparison process.

I will adopt the notion of search set suggested
by a resonance metaphor (Neisser, 1967, p.
65). Suppose each item in memory corresponds
to a tuning fork and the informational basis
on which comparisons are made corresponds
to frequency. Then, the comparison process
can be viewed as the probe tuning fork ring-
ing and evoking sympathetic vibrations in
memory tuning forks of similar frequencies.
Whether or not the probe evokes sympathetic
vibrations in a memory-set item depends only
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Figure 1. An overview of the item recognition model.

on the similarity of frequencies and is indepen-
dent of whether or not the memory item is in
the experimenter-designated memory set. The
amplitude of resonance drives the random walk
comparison process: The greater the amplitude
(better match), the more bias there is toward
a "yes" response; the smaller the amplitude
(poorer match), the more bias toward a "no"
response (see Figure 2).

So far, I have not indicated how many
memory items can be contacted by the probe.
It turns out that predicted performance will
be little affected even if the number of items
contacted is large, perhaps comparable to the

number of items in memory. The reason is that
"no" responses are based on exhaustive pro-
cessing of items in the searchi set, so the deci-
sion time for a "no" response is a function of
the group of slowest individual nonmatch
comparisons. Thus, many fast finishing pro-
cesses may enter the decision process without
affecting performance.

I will designate items giving rise to this
slower group of latency- and accuracy-deter-
mining processes as the semck set. In later
applications, the search set will usually be
approximated by the memory set. A demon-
stration that the evoked set (defined as all

MATCH
BOUNDARY

STARTING.
POINT

NON-MATCH .
BOUNDARY

1. CLOSE PROBE-ITEM MOO*
FAST TEHMMMflrme PROCESS

2. MODERATE MATCH
SUW TEMHMMMG PROCESS

3. MODERATE NOW-MATOHt
SLOW TERMINATING PROCESS

4. EXfflEME NON-MWTCH
FAST TERMWATIMG PROCESS

Figure 2. The relation between relatedness and amount of match in the dMfasiott lamdlwn) walk process.
(Relatedness varies from high [Process 1] to low [Process 4].)
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items contacted by the probe) can theoretically
be very large is presented later in this section.
There, it is shown that many probe-item
comparisons with very small resonant ampli-
tudes can be added to the few performance-
determining processes (probe-nontarget item
comparisons with larger resonances) without
changing latency or accuracy.

It is worth noting at this point that the
retrieval theory outlined in Figure 1 in con-
junction with the resonance metaphor can be
considered an implementation (for item recog-
nition) of content-addressable memory models
or broadcast models (Bobrow, 1975). The
notion of resonance also suggests similarities
to the pandemonium model (discussed in
Neisser, 1967) for feature encoding.

Information Entering the Comparison
Process

Here I examine in more detail factors
that influence the "amplitude of resonance."
Seward (1928, cited in Woodworth, 1938)
performed an experiment in which sub-
jects were presented with 30 patterns ("fancy
papers"). Following 10 minutes of unrelated
activity, a yes-no recognition test was given in
which 10 test items were identical to the study
items, 10 rather similar, 10 slightly similar, and
10 very different. It was found that as similarity
decreased, the proportion of "yes" responses
decreased and latency of "yes" responses in-
creased. Similarly, as similarity decreased, the
proportion of "no" responses increased and
latency of "no" responses decreased.

More recently, Juola, Fischler, Wood, and
Atkinson (1971) performed an experiment
with words as stimulus and probe items.
Stimulus words were memorized to a criterion
of perfect recall, and test words were presented
sequentially at a fixed rate. There were three
types of negative items: homophones and
synonyms of target words and neutral words.
It was found that synonyms were 60 msec
slower than neutral words, and homophones
were 120 msec slower; although when homo-
phones were broken down into two types,
visually similar and visually dissimilar to
target items, differences were 200 msec and 40
msec, respectively. These results show that
semantic, visual, and phonemic similarities
between probe and memory items affect
recognition performance.

Schulman (1970) studied a complementary
task, that is, one requiring the subject to make
the judgment as to whether a probe word was
identical to, a homonym of, or a synonym of
a presented word. Ten words were presented to
the subject (Sternberg varied-set procedure),
the judgment condition was cued, and the
probe word was presented. Accuracy, as
measured by d", and latency behaved in much
the same way: d' was highest and latency
shortest for the identical condition, d' was
lower and latency longer for the homonym
condition, and d' was lowest and latency
longest for the synonym condition.

Some similarity effects can be quite un-
expected. For example, Morin, DeRosa, and
Stultz (1967) and Marcel (1977) have shown
that the more numerically remote a negative
probe is from the memory set, the faster the
response (e.g., Probe 1 is faster than Probe 6
to Memory Set 798). Thus, numerical related-
ness can enter the recognition process.

All of these results suggest that similarity
between probe and memory-set items is a
major determinant of recognition performance,
and that performance is best conceived in terms
of discriminability between memory-set items
and distractors.

Further, the fact that so many factors in-
fluence item recognition performance raises
the question, How do we conceptualize the
structure of the memory trace? Tulving and
Bower (1974) have suggested that the most
generally accepted conception of the trace is
that of a collection of features or a bundle of
information. In addition, Tulving and Bower
describe methods that have been used to study
the features or combination's of information in
the trace; some of the methods are similar to
those described earlier in this section. However,
they conclude by stressing that inferences
about trace structure can only be drawn in the
context of a process model. The theory pre-
sented here specifies a process model in great
detail but does little more than describe the
memory trace as a bundle of information while
allowing some quantitative assessment of the
extent to which certain (possibly featural)
information is represented in the memory
trace.

It seems that many qualitatively different
types of information are contained in the
memory trace. In order to determine how well
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a probe matches an item in the memory set,
the interaction of the trace and probe informa-
tion must be assessed. I will use the single term
relatedness to describe the amount of match or
size of resonance. Thus, in Figure 2, Processes
1 to 4 have relatedness varying from high to
low. Relatedness will be assumed to vary over
items because whenever a group of nominally
equivalent items is memorized, some items are
better remembered than others (cf. strength
theory and attribute theory; Murdock, 1974).
In quantification of the mathematical model,
relatedness has variance (a normal distribution
of relatedness is assumed), which allows the
calculation of a d' measure of discriminability.
Variability in relatedness is shown later to be
necessary to ensure that asymptotic accuracy
is not infinite. It is possible to assess the extent
to which different kinds of information con-
tribute to the memory trace, for example, by
calculating d' discriminability values for dif-
ferent kinds of negative items in the experi-
ment by Juola et al. (1971) described earlier.

So far, I have made two main points. First,
the resonance metaphor is used in order to
emphasize that we are dealing with a parallel
interaction between the probe and the repre-
sentation of the memory-set items. The
retrieval scheme suggested by the resonance
metaphor allows performance to be affected by
items outside the memory set, although this
feature will not be used here in any of the
applications of the mathematical model and is
included only for sufficiency. Second, all trace
information is mapped onto a unidimensional
variable, that of relatedness, and relatedness is
the dimension on which discriminability be-
tween positive and negative items is assessed.

Comparison Process

Comparison of a probe to a memory-set item
proceeds by the gradual accumulation of evi-
dence, that is, information representing the
goodness of match, over time. It is easiest to
conceptualize the comparison process as a
feature-matching process in which probe and
memory-set item features are matched one by
one. A count is kept of the combined sum of the
number of feature matches and nonmatches,
so that for a feature match, a counter is in-
cremented, and for a feature nonmatch, the

counter is decremented. The counter begins at
some starting value Z, and if a total of A
counts are reached, the probe is declared to
match the memory-set item (A — Z more
feature matches than nonmatches). But if a
total of zero counts are reached, an item non-
match is declared. This process is called a
random walk (see top panel of Figure 3).

Relatedness corresponds to the ratio of the
number of matching features to the total
number of features. Two probe-memory-set
item comparisons involving identical related-
ness may still have different comparison times.
Suppose that in one process, the features are
ordered so that the matching features are
processed first, whereas in the second process,
nonmatching comparisons are carried out first.
Then, if the number of feature matches re-
quired for an item match is sufficiently less
than the total number of features, the two
comparison processes will give quite different
comparison times (the first fast and the second
slow) or perhaps will give different results
(item match and nonmatch, respectively). In
general, there is variation in comparison time,
depending on order of feature comparisons and
the distribution of matching and nonmatching
features within that order. Therefore, two
sources of variance have now been identified:
variance in relatedness and variance in the
comparison process.

Diffusion Process

In the mathematical formulation of the
theory, the comparison process is represented
by the diffusion process, the continuous ver-
sion of the random walk in both temporal and
spatial coordinates. The diffusion process has
the advantage that the mean rate of accumula-
tion of information and the variance in that
rate are independent parameters. In the
feature-matching model, the process is es-
sentially binomial, and mean and variance of
a binomial are correlated; whereas the diffusion
process is essentially normal, and mean and
variance are independent. The third panel of
Figure 3 illustrates the diffusion process.

Diffusion and relatedness. The critical as-
sumption made is that drift rate in the dif-
fusion process (in Figure 3, average distance
traveled vertically per unit time) is equal to
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Figure 3. An illustration of the random walk and diffusion process, together with relatedness distribu-

tions that drive the diffusion process.

the relatedness value. Thus, any particular
probe-memory-set item comparison has drift
equal to the relatedness value of that com-
parison, so that, for example, the greater the
probe-memory-set item relatedness, the faster
the match boundary is reached. The second
panel of Figure 3 shows two distributions of

relatedness, one for probe-target item com-
parisons and one for probe-nontarget item
comparisons.

Parameters for the comparison process.
Figure 3 shows the six parameters of the com-
parison process. Over the five paradigms ex-
amined, variance in relatedness (if) and vari-
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ance of drift in the diffusion process (s2) were
kept constant. Thus, there were four free
comparison process parameters to be fitted to
data: relatedness parameters u and v and
diffusion process boundary parameters z and a.
These, plus an encoding and response stage
parameter TEE, summarize performance in
item recognition experiments.

Variable criteria. For any particular item
recognition task, there are three variable
criteria to be set by the subject: the zero point
on the relatedness dimension (corresponding
to (8 in signal detection ^theory) and the two
boundary positions in the diffusion process.
Note that an item with relatedness zero, that
is, at the relatedness criterion, will have an
average rate of accumulation of evidence that
leads to no systematic drift toward either the
match or nonmatch boundaries. Changes in
boundary positions are the basis of speed-
accuracy trade-off and are discussed in a later
section.

Reaction time distributions. One feature
that distinguishes the retrieval theory from
most other models in this area of research is
that reaction time distribution shapes are
predicted and fitted. Figure 4 illustrates how
the normal distribution of relatedness with
mean u maps into a skewed reaction time dis-
tribution. Also shown in Figure 4 is an illu-
stration of the way in which the distribution
changes as u changes: When u decreases, the
fastest responses slow a little, and there is a
large elongation of the tail of the distribution.
Thus, a prediction of the model is that if
relatedness decreases, the mean and mode of
the distribution will diverge. In general, the
mathematical model will be manipulated to
yield expressions for reaction time distributions
and accuracy for both hits and correct rejec-
tions that can then be fitted to data.

Further aspects of the comparison process
are discussed later in relation to speed-ac-
curacy trade-off and in relation to other models
of the comparison process.

Decision Process

The decision process can be viewed as a
combination stage in which the products of
the many comparisons are combined to produce
either a "yes" or "no" response. The decision

i— REACTION TIME DISTRIBUTIONS

time

Figure 4. A geometrical illustration of the mapping
from a normal relatedness distribution to a skewed
reaction time distribution (with variance in drift
si = 0). (Note that as relatedness decreases, the dis-
tribution tail skews out. a represents the distance
between the bottom and top boundaries of the diffusion
process, z represents the distance between the bottom
boundary and the starting point, and « represents the
mean of the normal relatedness distribution.)

process is self-terminating on a match, so
that if enough evidence is accumulated in just
one comparison process, a "yes" response is
produced. In contrast, the decision process is
exhaustive on nonmatch comparisons, so that
a "no" response is produced only when all
comparison processes terminate in nonmatches.

It has already been noted that the finishing
time distribution for a single comparison is
similar to observed reaction time distributions.
It turns out that the distribution of finishing
times of the maximum of a number of diffusion
processes (each with a skewed finishing time
distribution) is again shaped very much like
observed reaction time distributions. Thus,
the mathematical model produces acceptable
shapes for both positive and negative response
time distributions.

In most item recognition studies, "no"
responses are almost as fast as "yes" responses,
and sometimes, this finding has provided
problems for certain models (see Collins &
Quillian, 1970; Smith, Shoben, & Rips, 1974).
This is not a problem for the retrieval theory,
although it may be hard to see how "no"
responses, which are based on exhaustive
processing of the search set, can be fast enough.
In fits of the mathematical model, it is found
that the separation of the starting point and
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Table 1
Accuracy and Latency as a Function of the
Number of Extra Fast Finishing Processes
for Correct Rejections, with v ~ — A,
a = .12, z = .03, and Search Set Size 16

No. extra
processes

m
(evoked
set = m
+ 16}

0
too
500

5,000
25,000

100,000

No. standard
deviations r

(of the m
process dis-

tribution) be-
low the non-
target dis-
tribution

0
2,
3,
4*7
5»
5,

^

Proportion
correct

.839

.838

.838

.838

.838

.835

Mean
reaction

time
(in msec)

358
363
362
358
363
358

noiunatch boundary (z) is smaller than the
separation of the starting point and match
boundary (a — z). Therefore, it is even possible
to have "no" responses much faster than "yes"
responses (as found by Rips, Shoben, & Smith,
1973).

Resonance Metaphor

It was argued earlier that the search set
could be made very large, but that reaction
time and error rates would still be determined
only by the slower comparison processes.
Suppose that in a typical fit to data from the
study-test paradigm, m extra processes are
added to the 16 probe-memory-search-set
comparison processes. Table 1 shows accuracy
and reaction time as a function of m and r,
where r is the number of standard deviations
the extra process distribution is placed below
the nontarget item distribution. Note that the
number of extra processes is adjusted, so that
the change in latency and accuracy is small for
the particular value of r used; thus, more
processes than m would produce significant
changes in accuracy and latency. The results in
Table 1 show that many probe-item com-
parisons with small relatedness may enter the
decision process without affecting accuracy or
latency. These results suggest that the reso-
nance metaphor has the right sort of properties
to be useful in theorizing about item recogni-
tion processes.

Speed-Accuracy Trade-off

In many models of item recognition, ac-
curacy and latency are not explicitly related,
even though it is well known that a subject
can sacrifice accuracy to produce a faster
response (e.g., Pachella, 1974). There are
several methods for studying speed-accuracy
trade-off, for example, Wickelgren (1977) lists
six methods. His six methods fall into three
basic classes: (a) methods that induce the
subject, for example, by use of instructions or
payoffs, to adjust tlje amount of information
required for a response; (b) methods that
force the subject, for example, by use of dead-
lines, response signals, or time bands, to
respond within some time limit; and (c)
methods that partition reaction times into
groups (e.g., those between 420 msec and 440
msec, those between 440 msec and 460 msec,
and so on) and compare accuracy values within
each partition.

The method of partitioning reaction times
has been discussed by Pachella (1974) and
Wickelgren (1977). Pachella claims that the
speed-accuracy function obtained from this
procedure is probably independent of the
speed-accuracy functions obtained from the
other two methods. In fact, the speed-ac-
curacy functions obtained from partitioning
simply tell us about the latency density func-
tions for error and correct responses and, in
terms of the retrieval theory, are largely un-
related to the other speed-accuracy measures
and so are not considered further.

In the retrieval theory, the relation between
speed and accuracy is central, and the diffusion
comparison process (plus the decision process)
may be viewed as a transformation from a
relatedness discriminability scale to observed
speed and accuracy measures. The first speed-
accuracy method, in which the amount of
information required for a response is manipu-
lated, and the second method, in which the time
of response is manipulated, can be viewed as
complementary in terms of the theory. When
instructions or payoffs are manipulated, the
process will be referred to as information
controlled; when response signals or time win-
dows are used, the process will be referred to
as time controlled.

Information-controlled processing. To
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demonstrate the way in which speed-accuracy probe-memory-set item comparisons: one
trade-off is modeled when instructions or match and one nonmatch. The assumption is
payoffs are manipulated, let us consider two that payoffs or instructions induce the subject

/\̂ __DISTRI8UTION OF HITS
' ^ MATCH

Z

0

PH..8
TIME

PCR'-B
NON -MATCH

DISTRIBUTION OF CORRECT REJECTIONS

I NON-MATCH
V BOUNDARY

INCREASED

MATCH BOUNDARY
INCREASED

NON-MATCH
BOUNDARY
INCREASED FURTHER

Figure 5. An example of the change in comparison time distributions and correct response rates (ps is
the probability of a hit and pen. is the probability of a correct rejection) for changes in boundary posi-
tions for one match process and one nonmatch process, with all other parameters constant. (The nu-
merical values and positions and shapes of the latency distributions illustrate the qualitative relations
between the three speed-accuracy conditions but are not quantitatively exact. [Note that in the middle
panel, there will be a slight decrease in ^CR.] Processes 1 and 2 illustrate comparisons that would have
terminated at the wrong boundary if the boundaries had been close as in the top panel, a is the dis-
tance between the two boundaries in the random walk comparison process, and z is the bottom boundary
to starting point distance.)
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MATCHING
COMPARISONS

NONMATCHING
COMPARISONS

t,

Figure 6. Spread of evidence as a function of time in the unrestricted diffusion process for one matching
and one nonmatching process. (At time t\, there is a large amount of overlap; at ta, the overlap has
reached asymptote, with asymptotic d' — (u — ti)/r; [see middle panel of Figure 3]. « is the mean of
the match relatedness distribution, and D is the mean of the nonmatch relatedness distribution.)

to adjust the positions of the match and non-
match boundaries and so to adjust the amount
of information required for a decision. For
example, Figure 5 illustrates the effect of
increasing the position of the nonmatch
boundary (middle panel) and increasing the
position of both boundaries (bottom panel).
When the position of the nonmatch boundary
is increased, "no" responses are made slower
and the number of misses reduced. When both
boundaries are moved apart, latency and
accuracy of both hits and correct rejections
increase.

As the boundaries move apart, the reaction
time distributions both shift (the fastest
responses or leading edge of the distribution
become slower) and spread (the mode and
mean of the distribution diverge), as shown in
Figure 5. The bottom panel of Figure 5
illustrates the time course of evidence ac-
cumulation for four comparison processes.
The two processes marked "1" and "2" are
examples of processes that would terminate
incorrectly with narrow boundaries but that
terminate correctly with the relatively wide
boundaries shown in the bottom panel. It is
the correct termination of processes such as
Processes 1 and 2 that is responsible for the

increase in accuracy as the diffusion process
boundaries are moved apart.

Time-controlled processing. Time-controlled
processing is modeled in a different way than
information-controlled processing. Figure 6
shows the way evidence accumulates from two
distributions of relatedness: (a) a probe-
memory-set item match and (b) a nonmatch
(see Figure 3, middle panel) as a function of
time. The decision assumption is that if a
particular comparison is stopped at time ti
and the amount of evidence is greater than
the starting value, then the comparison is
called a match, and if the amount of evidence
is less than the starting value, the comparison
is called a nonmatch, (For mathematical
tractability later, it is assumed that the
match and nonmatch boundaries are far apart
and that the random walk diffusion process
can be considered unrestricted). Figure 6
shows the way evidence has accumulated at
times ti, fa, and t3. At early times (ti), there is a
large amount of overlap, and d' is rather small.
At later times (fe and k), target and nontarget
distributions have diverged and are approach-
ing an asymptotic form that corresponds to
the relatedness distributions shown in the
middle panel of Figure 3. Thus d' as a function
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of time approaches an asymptote. (Mathe-
matical expressions for d' as a function of time
and fits to data are shown later.)

Thus, we see that the random walk com-
parison process can account for results from
both information- and time-controlled speed-
accuracy experiments.

Model Freedom

In the description of the retrieval theory,
I have stressed the flexible nature of the pro-
cessing system, and this flexibility shows up
as apparent model freedom. I now discuss
the problem of model freedom and indicate
which functional relations provide reasonably
constrained tests of the mathematical model.

When applied to an experiment, the mathe-
matical model has five variable parameters,
namely, TEE, z, a, i>, and u. The encoding and
response parameter TEE. is fixed, so that in
order to evaluate the effect of independent
variables on performance, TER can be con-
sidered constant. In any situation where experi-
mental conditions change between trials and
the subject can know which condition is being
tested (e.g., set size in the Sternberg paradigm),
it is possible that criteria (z, a, v, and u) will
change across conditions. So, there are four
parameters free to vary in fitting the data.
There is a rather weak constraint on the value
of these parameters in that if performance
exhibits regular behavior, then changes in
z, a, v, and u should be regular. More useful
tests of the mathematical model can be found
in experiments where, on any particular trial,
it is not possible for the subject to know which
condition is being tested prior to retrieval (e.g.,
serial position in the Sternberg paradigm).
In such situations, criteria cannot be adjusted
to systematically vary with the independent
variable. Thus, the only parameter free to vary
is relatedness u, and with only u varying,
accuracy and latency must be simultaneously
fitted.

One major aim in developing the mathe-
matical model is to fit reaction time distribu-
tions. In fact, reaction time distributions are
fitted without the need to add any further
parameters. This account contrasts sharply
with that given by the serial scanning model
for the Sternberg paradigm. It is generally

agreed that the exhaustive serial scanning
model is simple and easily testable, with only
three parameters, one slope parameter, and
two intercept parameters. It is not generally
realized, however, that to fit reaction time
distributions (using additive-factors logic and
the Pearson system of frequency curves), the
serial scanning model suddenly requires nine
parameters (Sternberg, Note 1). If accuracy
performance were to be fitted also, then still
more parameters would be required. Thus,
the number of parameters needed for the
retrieval theory to fit results from the Stern-
berg paradigm may turn out to be much the
same as the number of parameters needed by
the serial scanning model. This discussion
shows that there are certain constraints that
are rather hard to evaluate, for example, how
many degrees of freedom are taken up in
representing reaction time distributions.

It was argued earlier that many kinds of
information enter the comparison process,
including recency information. The decay of
recency information (or strength) has been
modeled several times, and various simple
models with few parameters have been de-
veloped (Atkinson & Shiffrin, 1968; Murdock,
1974; Norman & Rumelhart, 1970; Wickel-
gren & Norman, 1966). The retrieval theory
describes performance as a function of recency
with a series of relatedness values u. Thus,
for example, there will be a separate value of
relatedness u at each serial position, that is,
there will be as many free parameters as there
are serial positions. If some assumptions about
decay in relatedness were made, then this
series of relatedness values could possibly be
fitted by a simple few-parameter model (as in
the models mentioned above), thus reducing
the number of free parameters.

In conclusion, it seems that the problem of
model freedom is more complex than it would
appear at first sight. Simple few-parameter
models require the addition of many more
parameters to account for anything more than
crude summary statistics, and complex models
may be quite tightly constrained in non-
obvious ways.

Mathematical Model

In this section, some of the principal param-
eters, functions, and expressions for the
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mathematical model are introduced. A much
more complete discussion of the random walk
and diffusion processes with derivation com-
bination rules for exhaustive and self-terminat-
ing parallel processing are presented in the
Appendix. Later in the present section, the
method of fitting the theory to data is de-
scribed, checks on the fitting program are
described, and relations to other models are
discussed.

Parameters of the Mathematical Model

The parameters used in the mathematical
model arise from different theoretical sources
and may be summarized as follows: (a) for the
comparison (diffusion) process: lower bound-
ary zero, starting point in the diffusion process
z, and upper boundary a; drift in the diffusion
process (equal to relatedness) and variance in
the drift s2; (b) for probe-item relatedness: a
normal distribution N(u, rf) for matching
comparisons and a normal distribution N(v,»;)
for nonmatching comparisons; and (c) an
encoding and response output parameter rBR.
Note that s2 and if are kept constant through-
out the fits presented in this article, so that the
only variable parameters are a, z, u, v, and
TER. Thus, M and v alone represent input from
memory into the decision system.

Diffusion Process

The diffusion process is used to represent
the accumulation of evidence for a single
probe-memory-set item comparison. As dis-
cussed earlier, one has to select aspects of the
data (summary statistics) as points of contact
between theory and data. I have chosen to use
mean error rate and reaction time distribution
statistics, and so it is necessary to derive
expressions for error rate and finishing time
density functions for the diffusion process. In
the Appendix, expressions for error rate and
finishing time density functions are presented
for the discrete random walk. Taking the
limit as the number of steps becomes large and
the size of each step becomes small allows us to
obtain expressions for error rate and finishing
time density functions for the diffusion process
(as shown in the Appendix).

Consider a single probe-memory-set item

comparison with relatedness £ ; as noted earlier,
drift in the diffusion process is set equal to
relatedness. Let the nonmatch boundary be at
zero, the starting point of the process be at z,
and the match boundary be at a. Then, if s2

is the variance in the drift in the diffusion
process, the probability of a nonmatch is given
by

(Throughout this section the subscript minus
will refer to a nonmatch and the subscript
plus will refer to a match.) The finishing time
density function for a nonmatch is given by

-ITS'

/a'X. (2)

The equivalent expressions for a match
[T+(?) and g+(t, £)] can be found by setting
£ = — £ and 2 = a — z in Equations 1 and 2.
Note that g-(t, £) is not a probability density
function because some proportion of compari-
sons end up as matches. However, g-(t, £)/
7-(£) is a probability density function.

Decision Process

The decision process is self-terminating for
matches and exhaustive for nonmatches. Thus,
in order for a "no" response to be made, all
the comparison processes must finish, and the
decision time is the maximum of the individual
comparison process times. Let Gi-(t) be the
finishing time distribution function

G-(t, & =

for a nonmatch of process i, and Gm&K(t) be
the finishing time distribution function for the
maximum of n nonmatch processes. Then,

and also

(3)
z=-l

where 7i-(£) is the probability of a nonmatch
of the ith comparison, and 7-(£) is the prob-
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ability of obtaining a nonmatch from the n
comparisons. The expressions for the match
decision (minimum of the comparison processes
that terminate in a match) are more compli-
cated and are shown in Equations A19 to A22
in the Appendix.

Equations 1, 2, 3 and A20 form the basis for
computation of predicted reaction time dis-
tributions and error rates.

Probe-Memory-Set Item Relatedness

Because relatedness £ has a normal distribu-
tion [_N(u, r;) and N(v, y) for matching and
nonmatching comparisons, respectively], it is
necessary to average G(t, £) and y(l-) over
relatedness before obtaining the final theo-
retical expressions for error rates and reaction
time distributions.

A complete description of the mathematical
model, together with all the equations neces-
sary to obtain reaction time distributions and
error rates, is presented in the Appendix.

Fitting the Mathematical Model to Data

Despite the recent popularity of reaction
time research, reaction time distributions have
been largely ignored as a source of information.
This is surprising in view of the fact that dis-
tributional information can be useful in
evaluating models (Ratcliff & Murdock, 1976;
Sternberg, Note 2). However, one problem in
using reaction time distributions concerns the
choice of statistics used to describe a distribu-
tion. The traditional method that uses mo-
ments (Sternberg, Note 1) turns out to be of
little practical use because many thousands of
observations per experimental condition are
required before stable estimates can be ob-
tained. Furthermore, higher moments (third
and fourth) describe the behavior of the ex-
treme tail of the distribution (Ratcliff, Note 3)
and, therefore, are of little practical interest.
Ratcliff (Note 3) has suggested that the param-
eters of the probability density function of
the convolution of a normal distribution
[_N(IJ,, <r)] and an exponential distribution
C/(0 — (lA)e~"T] provide a good summary of
empirical reaction time distributions (see also
Ratcliff & Murdock, 1976). I have decided to

use the convolution distribution

£ (4)

as a meeting point of theory and data. The
convolution model is fitted to data, and
parameter values obtained serve to summarize
that data. Theoretical reaction time distribu-
tions are computed, and the convolution model
is fitted to the theoretical distribution giving
theoretical values of the parameters. Figure 7
shows some fits of the convolution model to
the theoretical distributions, and it can be seen
that the curves are similar.

In order to fit the theory to data, the equa-
tions derived earlier were used to give values
of correct response rate pt and reaction time
distribution parameters /*< and T«. (The
parameter a of the convolution model can be
left out because generally a does not theo-
retically and empirically change appreciably
with experimental condition, and the values
for both theoretical and empirical estimates
are similar.) The corresponding three empirical
parameters p,, pe, and re are estimated from
the data (averaging across subjects), and the'
function

(P. - o*. -

(summed over both hits [H] and correct
rejections CCR]) is minimized as a function of
the theoretical parameters. The variances <rM

2

and crT
2 are asymptotic variance estimates for

the convolution model (see Table 2 of Ratcliff
& Murdock, 1976), and ffp

2 = />.(! - p.)/N,
where N is the number of observations on
which pe is based.

Because the theoretical reaction time dis-
tributions are best fits to the average reaction
time distributions across subjects (/*« and re

are averages over subjects), it is difficult to
get any direct idea of how well the theory
accounts for the data. Ratcliff (Note 3) has
developed a method of producing group reac-
tion time distributions. Essentially, reaction
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7. Some sample theoretical reaction time distributions (solid lines) for theoretical parameters
u, a, z, and v and fits of the convolution model parameters p, a, and T to theoretical distributions (dots).
(These distributions illustrate the adequacy of the convolution approximation to the theoretical
distributions, ms = msec.)

time quantiles are derived for each subject cell,
and these quantiles are averaged over subjects
to give group quantiles. The group quantiles
are then plotted on the horizontal axis of a
graph. If, for example, 5% quantiles were used,
then 5% of the probability density would lie
between adjacent quantiles. Therefore, a
probability density function can be con-
structed by drawing equal area rectangles be-
tween adjacent quantiles. The theoretical
probability density function can be compared
with the empirical function by plotting the
two functions on the same graph. This method
is used to show how well the theoretical reac-
tion time distributions fit the data. It should
also be noted that the convolution parameters
derived by fitting the convolution model to the
reaction time quantiles are almost identical to

the convolution parameters that are the
average, across subjects, of convolution fits to
individual subject cells (Ratcliff, Note 3).

Checks on the Estimation Method

In fitting moderately complex models, such
as this diffusion process model, there are many
places where errors might occur. Therefore,
two kinds of checks should be carried out:
internal and external checks. For example, an
internal check that should be carried out when
numerically integrating to infinity involves
printing out the integrand over the range of
integration and checking the values by hand
calculation. External checks can be somewhat
more involved. The idea here is to compare
values obtained from the program with some

JLMCC
Cross-Out



A THEORY OF MEMORY RETRIEVAL 73

known or established values. A program to
compute accuracy and reaction time distribu-
tions was implemented on an IBM 370-165
computer in WATFIV FORTRAN and, without
the integration over relatedness (Equations
A24 and A25), was implemented on a PDP-
12A computer hi FOCAL language. Letting
17 —» 0 in the FORTRAN program, the two pro-
grams were found to give identical results. The
FOCAL program was checked by calculating
values of first passage time distribution for
a » z. These results were then compared with
values obtained from the one barrier diffusion
process, Equation 6 (see Cox & Miller, 1965,
p. 221; Feller, 1968, p. 368), with probability
density function

g-(0 =

These values were identical, and so the evalua-
tion of the model can be considered satisfactory.

Relations to Other Models

In this section, I compare and contrast the
present theory with three classes of models and
theories. The first class of models assumes
exponentially distributed processing stages;
some of these models attempt to deal with the
same experimental domain as the retrieval
theory. The second and third classes are
random walk and counter models; these have
been developed to account for both accuracy
and latency in choice reaction time and re-
search in perception.

Models with exponential processing stages.
In several models of memory search and
memory retrieval, exponential distributions
have been used to represent the finishing time
distributions of processing stages (Anderson &
Bower, 1973; Atkinson, Holmgren, & Juola,
1969; Townsend, 1971,1972). The exponential
distribution is useful because it is a one-
parameter distribution and has a skewed posi-
tive tail just as observed reaction time dis-
tributions. Furthermore, the exponential is
easy to work with and quite often allows exact
solutions to be obtained for complicated ex-
pressions (e.g., Anderson, 1974). However,
there are several problems in using the ex-
ponential distribution. First, Sternberg (1975)

argues that the Markov (no memory) property
of exponential distributions is inconsistent
with what is meant by processing over time.
For an exponential process, the expected time
to termination is independent of the time al-
ready elapsed; whereas a more reasonable view
of cognitive processing would suppose that the
longer a process has been running, the greater
the probability of its termination. Second, the
use of exponentials to represent stage distribu-
tions may produce good fits to- mean reaction
time but may not lead to theoretical distribu-
tions that match the shape of observed reac-
tion time distributions. Furthermore, when the
additive-factors method has been applied and
component stage distributions extracted using
Pearson's method (Sternberg, Note 1), the
underlying distributions are far from ex-
ponential. Thus, a good strategy may be to
develop a model using exponentials and then
test whether in fact the stage distributions are
exponential. Third, simply assuming that pro-
cessing stages have certain finishing time
distributions avoids the crucial fact that both
latency distributions and errors arise from
common stages or mechanisms, and that
perhaps the major theoretical effort should
focus on relating accuracy and latency.

Exponential distributions are an extremely
useful tool for beginning an investigation but
can be somewhat misleading theoretically if
they represent processing stage distributions in
a mature model.

Random walk models. Several models of
choice reaction time based on the random
walk comparison process have been developed
recently (Laming, 1968; Link, 1975; Link &
Heath, 1975; Stone, 1960). Here, I consider a
recent formulation termed relative judgment
theory (Link, 1975; Link & Heath, 1975) and
note some of the similarities and differences to
the retrieval theory. :

In relative judgment theory, a physio-
logically transduced value of the stimulus is
compared to an internal referent or standard.
During a unit of time, the difference obtained
is added to an accumulator of differences. When
the accumulated difference exceeds one of two
subject-controlled thresholds, a response is
made.

Relative judgment theory has several im-
portant similarities to the theory developed in
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this article. First and foremost, the decision
process is modeled by a random walk, and
information discriminating the two stimuli is
mapped onto a single dimension. Second, there
are three criteria to be set by the subject: the
value of the internal referent, corresponding
to the zero point of relatedness in the retrieval
theory, and the two boundary positions. Thus,
there are the same number of variable criteria
in the two mathematical models. Third, the
two theories are both concerned with the joint
behavior of accuracy and latency as a func-
tion of independent variables.

It is the differences between the theories that
provide most insight into their relation. First,
the random walk in relative judgment theory
has discrete steps, and the difference accumu-
lated in a particular interval has some dis-
tribution ; whereas the retrieval theory assumes
continuous processing. Mathematical expres-
sions for the first passage time (latency) dis-
tributions have not yet been obtained for
relative judgment theory, except in the case of
binomial (or trinomial) and normal distribu-
tions of differences, as they have for the con-
tinuous random walk. For choice reaction
time, error responses are faster than correct
responses when accuracy is high, and relative
judgment theory accounts for this by assum-
ing that the moment-generating function for
differences is nonsymmetric. This assumption is
equivalent to supposing that the individual
step distribution is positively skewed in the
direction of an incorrect response. In contrast,
in the retrieval theory, the continuous random
walk has the normal distribution underlying
performance [essentially drift is distributed
N(u, s)~\. Second, the internal referent in
relative judgment theory is assumed to have no
systematic drift over the course of testing.
Thus, there is only one source of noise or
variance and that is in the comparison pro-
cess. In the retrieval theory, there is a further
source of variance and that is in memory-set
item-probe relatedness. Therefore, relative
judgment theory predicts that if the response
boundaries are set at infinity, discriminability
d' increases as a function of the square root
of the number of steps. This prediction is
quite reasonable if, for example, the choice is
between two well-discriminated tones. In
contrast, variance in relatedness in the re-

trieval theory ensures that d' asymptotes as a
function of retrieval time. Third, relative
judgment theory has been developed to deal
with the simplest case, namely, a two-stimulus,
two-response discrimination procedure. On the
other hand, the retrieval theory has been
developed to deal with the problem of match-
ing one item against many items in memory
and discriminating one match against many
nonmatches. Fourth, relative judgment theory
has provided somewhat cleaner experimental
tests than will be shown in the next section.
However, it is somewhat difficult to compare
the power of the two sets of tests of the two
theories.

From this discussion, it can be seen that
there is potential for making explicit a con-
tinuity between memory retrieval and per-
ceptual discrimination.

Counter models. The class of counter models
provides a serious competitor to random walk
models. Perhaps the major difference between
counter and random walk models is that
random walk models assume that positive and
negative differences cancel, whereas counter
models assume separate counters for positive
and negative evidence. Thus, for counter
models, termination occurs when one of the
two counters exceeds a criterial count.

Counter models have been examined in some
detail by Pike (1973) with specific applica-
tion to signal detection. In Pike's article,
many of the main properties of counter models
are listed and discussed. Anderson (1973)
combines a counter model with a neural
network model to account for results from
choice reaction time studies and the Sternberg
paradigm. Huesmann and Woocher (1976)
have applied a counter model, together with
parallel processing assumptions, to the Stern-
berg paradigm.

One major problem with counter models
concerns the behavior of latency distributions
as a function of count criteria. When count
criteria are low (e.g., 1 or 2), latency distribu-
tions are reasonably skewed. However, as the
count criteria increase (e.g., 4 to 10), the dis-
tributions become more normal (Pike, 1973,
p. 61). This contrasts with the prediction of
random walk models that the mode and mean
of the latency distribution should diverge as
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the random walk boundaries (criteria) are
moved apart.

At the moment, counter models as well as
random walk models have not been investi-
gated in enough detail, and further research
may provide useful competitive theories for
both memory retrieval and perceptual
discrimination.

Experimental Paradigms

Up to this point, I have set up the basic
framework of the theory and derived the
necessary mathematical expressions. In the
following sections, the theory is applied to
five experimental paradigms.

Study-Test Paradigm

In a typical study-test experiment, 16
stimulus words are presented for study, and
then 32 words (16 old and 16 new in random
order) are tested for recognition, one at a time.
The study phase is paced at about 1 sec per
item, and the test phase is self-paced, with
each test item staying in view until a response
is made. Responses are made on a 6-point
confidence scale, and accuracy and latency are
recorded.

The study-test paradigm has been studied
recently in some detail (Murdock, 1974;
Murdock & Anderson, 1975; Ratcliff &
Murdock, 1976), primarily as the empirical
basis for the conveyor belt model (Murdock,
1974) for item recognition. The conveyor belt
model assumes that a record of the temporal
order of both study and test items is stored in
memory. In order to decide whether a test
item was in the study list or not, a high speed
self-terminating backward serial scan is carried
out over the temporal record of both test and
study items. The conveyor belt model deals
with retrieval from supraspan lists only and
brings coherence to a number of empirical
results. However, the model has some problems
and limitations, and these are discussed in
Ratcliff and Murdock (1976). Because of the
large amount of data collected in Murdock's
experiments and because of the stability of
the empirical effects, the study-test paradigm
provides a very strong empirical foundation for
attempts to model recognition memory pro-

cesses. Ratcliff and Murdock (1976) provided
a summary of empirical effects, and this
summary (see Figure 8) is the basis for much
of the following discussion. It should be noted
that the data actually come from a confidence
judgment procedure but are modeled as though
they came from a yes-no procedure. It turns
out that results from the two procedures are
similar (Murdock, Hockley, & Muter, 1977),
so this approximation seems reasonable.

To model the study-test paradigm, I will
assume that a test (or probe) item is encoded,
and parallel comparisons are made between
the encoded test item and members of the
search set. The search set is approximated by
the 16-item study set, with the same normal
probability density function N ( v , y ) for each
nonmatching comparison (i.e., it is assumed
that only study items are accessed by the
test item and all nonmatching comparisons
have equal relatedness). The probability
density function of relatedness for a matching
comparison is N(u, i)).

Serial and Test Position Functions

The main empirical effects to be modeled
are the behavior of latency and accuracy as a
function of study (or input) and test (or
output) position for old items and of test
position for new items (see Figures 8b and 8c).
Data are taken from Ratcliff and Murdock's
(1976) Experiment 1.

Parameter variation. As noted earlier, when
variation in some experimental variable can
be known to the subject prior to retrieval, there
is the possibility of changes in criteria as a
function of that experimental variable. Test
position is one such variable. As test position
increases, forgetting of study items increases,
and the subject may set more lenient criteria
(increases a and z) in an effort to improve
accuracy. Thus, relatedness of probe-non-
target item comparisons (ti) and diffusion
process boundary parameters (z and a) can
change as a function of test position.

Relatedness of probe-target item compari-
sons (u) varies as a function of test position, as
do it, a, and z. However, unlike 11, a, and z, u
varies as a function of study (or serial) position.
The subject cannot alter criteria as a function
of serial position because knowledge of the
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Figure 8. Schematic representation of functional relations obtained in the study-test paradigm (from
Ratcliff & Murdock, 1976). (IP and 2P represent once-presented and twice-presented stimuli,
respectively.)

study position of a probe item can only result position must both be predicted by changes in
from the retrieval of that item. Thus, changes (the single parameter u.
in accuracy and latency as a function of serial The variance parameters s* and if are kept
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constant, as mentioned earlier, at (.08)2 and
(.18)2, respectively. A single constant time
TEE is assumed for probe encoding, preparation
for comparison and decision processes, execu-
tion of the decision process, and response out-
put processes. These processes could be
assumed to have some distribution of process-
ing times with small variance, without altering
the fits to distributions shown later.

Correct rejections. Figure 9 shows accuracy,
mean reaction time, and reaction time distri-
bution parameters /i and r for correct rejections
as a function of test position, together with
theoretical fits and theoretical parameters v, a,

and z. The fits are quite acceptable, and it can
be seen that, indeed, criteria change as a
function of test position to compensate for the
overall drop in discriminability (forgetting).

Hits. Figure 10 shows accuracy and mean
reaction time as a function of study (or serial)
position, together with theoretical fits and
values of relatedness u. From these fits, it can
be seen that the one-parameter u can fit both
accuracy and latency and that changes in
accuracy and latency can be modeled by
changes in the single parameter u. Inspection
of Figure 10 shows that u behaves in a very
regular manner as a function of study and test
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Figure 9. Accuracy, mean reaction time, and reaction time distribution parameters (/u and T) as a func-
tion of test position for the study-test paradigm, together with the theoretical parameters », a, and z,
which are used to generate the theoretical fits. (Data are from Ratcliff and Murdock's, 1976, Experi-
ment 1.)
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Figure 10. Accuracy and mean latency as a function of study position blocked by test, or output, posi-
tion (O/P), which is used to produce the fits. (Other theoretical parameters used in the derivations
are shown in Figure 9.)

position. There is a consistent primacy effect
across test (or output) position, and the strong
recency seen at early test positions has dissi-
pated by later test positions. Therefore, it
seems likely that one could reduce the number
of degrees of freedom by modeling the pattern
of behavior of u just as the pattern of accuracy
performance in free recall has been modeled
as a function of serial position and delay (i.e.,
test position; Murdock, 1974, chap. 8). I have
not attempted to fit such a functional relation
because it adds little theoretically. Changes in
reaction time distributions as a function of
serial position are mainly changes in spread of
the distribution or the T parameter in the
convolution model (Ratcliff & Murdock,
1976), and this pattern of results is predicted by
the theory.

Reaction time distributions. In the section
on fitting the mathematical model to data, I

argued that the most satisfactory way to fit
the theoretical reaction time distributions to
data (in the case of this theoretical model)
is through the use of the convolution model as
an empirical summary of shape. Further, it
was also argued that the best way to display
fits of the theory to data averaged over
subjects is by the use of group reaction time
distributions (see also Ratcliff, Note 3).
Figure 9 shows both the theoretical and
empirical values of ju (leading edge) and T (tail),
parameters of the convolution model, as a
function of test position for correct rejections.
It is these data that posed problems for the
backward serial scanning (conveyor belt) model
(Ratcliff & Murdock, 1976). The conveyor
belt model predicts that most of the increase
in mean latency will be accounted for by an
increase in latency of the whole distribution
(/u parameter) rather than the tail (T param-
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eter). Although the theoretical distributions
are fitted to empirical data by using the ^ and
T parameters (i.e., minimizing a function of
H and T) of the convolution model, the retrieval
theory makes the strong prediction that
changes in mean latency will be manifest
mainly as changes in T (i.e., slower responses
getting slower; see Figure 4). In fact, patterns
of results with changes in /* greater than
changes in T as a function of test position would
be impossible to accommodate without large
changes in random walk boundary positions
a and 0. Large changes in a and 2 would change
error rates and hit latencies in such a
way that the set of data could not be fitted
simultaneously.

Figure 11 shows fits of the theoretical
distributions to the group reaction time
distributions for both hits and correct rejections
as a function of test position. From these
graphs, it can be seen that the theory does a
good job of fitting the reaction time
distributions.

Error reaction times. It was noted earlier
that the data used in fitting the theory came
from a confidence judgment procedure rather
than a yes-no procedure. For correct reaction

times, it was reasonable to use the data from
high-confidence correct responses because re-
sults were not changed much by addition of
lower confidence reaction times. Another
reason to use only the high-confidence re-
sponses is that many lower confidence responses
may be contaminated by other processes such
as more than one comparison or a slow guess.
In contrast, there are relatively few error
responses, and high-confidence responses are
typically 150 msec to 600 msec faster than
low-confidence responses. The theory makes
predictions (using parameter values obtained
earlier in this section for Ratcliff & Murdock's,
1976, Experiment 1) about error reaction times
that are not too unreasonable. For example,
the theory predicts that miss reaction times
increase with output position at about 5
msec per item (by linear regression), with an
intercept of about 860 msec. The data for
high-confidence responses show a slope of
about 11 msec per item, with an intercept of
820 msec. All miss responses combined (high,
medium, and low confidence) give reaction
times about 200 msec longer. For false alarms,
predicted slope is about 5 msec per item, and
the intercept is 1,200 msec. High-confidence
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TEST POSITION 2-8

TEST POSITION 9-16

TEST POSITION 17-24

TEST POSITION 25-32

HITS

TEST POSITION 2-8

TEST POSITION 17-24

TEST POSITION 25-32

Figure 11. Group reaction time distributions and theoretical fits to those distributions from Ratcliff
and Murdock's (1976) Experiment 1.
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Table 2
Fits to Accuracy and Latency for Repeated and Nonrepeated Study Items in the Study-Test
Paradigm (Data are from Ratcliff & Murdoch's, 1976, Experiment 4)

Response

Correct rejection
Once-presented hit
Twice-presented hit

u v

— -.38
.18 -.38
.18 -.38

Theoretical

a Accuracy

.1 .74

.1 .69

.1 .87

Experimental

M

472
455
445

a"

37
34
26

T

216
190
170

Accuracy

.74

.70

.84

M

470
450
450

(7

40
40
40

T

220
190
160

Note, , a, and T are measured in msec; TEB = 350 msec and z = .02.

false alarms have slopes of 8 msec per item and
intercepts of 830 msec, so the theory over-
predicts high-confidence false alarms. However,
adding lower confidence false alarms increases
reaction time by about 600 msec. Thus, the
theoretical error reaction times come near to
the data in some cases but are not so near in
other cases.

Number of Stimulus Presentations

When items are repeated in the study list,
I assume that separate representations are
established. The assumption of separate
representations is made because of the prob-
lems that a single-representation strength
theory appears to have (Anderson & Bower,
1972; Wells, 1974). With two representations,
there are two comparison processes with high
relatedness values, and these two processes
race to match. Thus, reaction time will be
faster and accuracy higher than for singly
presented items, as is seen in the data (see
Figure 8e). To model these data, representative
values of accuracy and latency for once-
presented items are chosen, model parameters
for those values are deduced, and then ac-
curacy and latency for the two racing processes
are computed. To compute fits for twice-
presented items, it was assumed that the two
racing processes had equal u values, and
Equation A22 was modified appropriately.
This approximation is reasonable, taking into
account the input or serial position functions
shown in Figure 10, because in general, u
values are not too different at different serial
positions. Table 2 shows theoretical fits and
experimental results for accuracy and latency
distributions. The only discrepant result is the

slight theoretical overestimation of accuracy
of twice-presented items.

Rate of Presentation: Dangers Inherent in
"Between" Designs in Reaction Time
Experiments

A major problem for strength- or familiarity-
based theories of retrieval is the result shown
in Figure 8d. As rate of presentation of study
items decreases, accuracy increases; but re-
action time increases instead of decreasing,
as a strength theory would predict. In the
experiment from which Figure 8d was derived
(Ratcliff & Murdock's, 1976, Experiment 2),
rate of presentation was a between-sessions
variable. The retrieval theory would predict
the same result as a strength theory if all
criteria were constant across conditions. How-
ever, there is a way out for the retrieval theory,
and that is to suppose that criteria change
with conditions.

As discussed earlier, one of the stronger
tests of the retrieval theory is made when
criteria cannot be adjusted to experimental
conditions. Thus, a strong test of the theory
can be made if presentation time can be made
a within-trials variable. Then, only relatedness
u can vary as a function of presentation time
per item, and variation in both accuracy and
latency must be predicted by variation in u
alone. If the results shown in Figure 8d hold
up when presentation time per item is made a
within-trials variable, then the theory in its
present form must be rejected. In Experiment
1, presentation time per item is made a within-
trials variable.
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Experiment 1

Method. A standard recognition memory procedure
was employed. A list of 16 study items was presented,
followed by a test list containing all the study items
and an equal number of new items in random order.
The lists were random samples from the University
of Toronto word pool, a collection of 1,024 two-syllable
common English words not more than eight letters
long, with homophones, contractions, and proper
nouns excluded. Each trial consisted of a random selec-
tion from the word pool. Each session had 32 lists, and
there were no repetitions within a session. List genera-
tion, display, and response recording were controlled
by a PDP-12A laboratory computer. In each study
list, there were four different study times (.5, .8, 1.2,
and 1.8 sec per item), and four study items (in random
presentation order) were assigned to each of four study
time conditions per list. The study list was terminated
by an instruction asking the subject to press a response
key to start the test phase. The test phase was self-
paced, and items stayed in view until a response was
made. A confidence judgment procedure was employed,
and the subjects had to respond on a 6-point scale from

("sure new") to +++ ("sure old") by pressing
the appropriate response key. For each item tested,
input and output position (output position only for
new items), confidence judgment (i.e., key pressed),
and latency (stimulus onset to response key depression)
were recorded. A S-msec time base was used. The four
subjects were undergraduates in psychology at the
University of Toronto and were paid $30 for the 12
sessions plus 1 practice session.

Results. Figure 12 shows the main result:
When presentation time per item is a within-
trials variable, then the longer an item is
presented, the more accurate and faster is the
response to that item. This result contrasts
with the result found in Ratcliff and Murdock's
(1976) Experiment 2 (shown in Figure 8d),
where responses became more accurate but
slower as duration of presentation increased.
Also shown in Figure 12 are values of u as a
function of presentation time per item and
predicted values of accuracy and reaction time.
Thus, the theory makes the correct prediction
and is supported by the experimental results.

Implications for reaction time research. Be-
sides providing a critical test of the retrieval
theory, these results on presentation time per
item have important consequences for the
methodology of reaction time research. It has
often been argued that subjects in reaction
time experiments can adopt different speed-
accuracy criteria under different experimental
conditions, and subjects have been induced
to do so in many experiments (e.g., Banks &
Atkinson, 1974; Lively, 1972). However, in
most reaction time experiments, there does not
seem to be much evidence of criteria being
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Figure 12. Accuracy, mean latency, and relatedness u as a function of presentation time per item for
Experiment 1. (Theoretical parameters v, a, z, and TBR are shown in the figure. RT represents mean
latency; ms = msec.)
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adjusted as a function of experimental condi-
tion. For example, Wickelgren (1977) states,

To be completely fair, we do not know for certain that
subjects' capability to achieve any degree of speed-
accuracy tradeoff (from chance to asymptotic accuracy)
under speed-accuracy tradeoff instructions implies
that this capacity is used under reaction time instruc-
tions. Perhaps in reaction time experiments, all sub-
jects use the same speed-accuracy criterion and use it
under all conditions, (p. 81)

The above results on presentation time show
that a theoretically important functional
relation (latency as a function of presentation
time per item) contradicts theories when
studied in a between design yet supports the
same theories when studied in a within design.
There are two important consequences: (a)
In any reaction time experiment where criteria
can be changed as a function of experimental
condition, any differences in reaction time as
a function of condition may be interpretable
only as a change in speed-accuracy criteria
and nothing more, (b) Theories of reaction
time should be flexible enough to deal with
criteria changes such as those demonstrated
above.

Study-Test Paradigm: Summary

The study-test paradigm provides a firm
empirical basis for modeling item recognition
processes. The retrieval theory models results
by assuming that parallel comparisons between
the probe (test item) and members of the
study list are made. The decision process is
self-terminating on matches and exhaustive
on nonmatches. Test or output position func-
tions are well fitted by assuming that v,
relatedness of nontarget comparisons, de-
creases and diffusion process boundaries in-
crease a little with increasing test position.
Latency and accuracy as a function of study
position show serial position functions with
both primacy and recency. For fixed output
position, only the relatedness parameter «
can vary with serial position, and fits to both
accuracy and latency with just this one
parameter varying are good. Latency distri-
butions and error latencies are also well
described by theoretical predictions.

Ratcliff and Murdock (1976) presented an
experiment in which number of stimulus

presentations was varied. The theory was able
to account for results from this experiment by
assuming separate representations, so that
there were two processes with high relatedness
racing to the match boundary. Both latency
and accuracy were well fitted by results derived
from this assumption.

An investigation into rate-of-presentation
effects exposed important methodological
dangers in between designs involving the use of
latency measurements. Ratcliff and Murdock
(1976) showed that both accuracy and latency
increased as rate of presentation was decreased
in a between-sessions design. The latency effect
is contrary to many theories, including the
theory developed here, if it is assumed that
speed-accuracy criteria are kept constant.
The present Experiment 1 varied presentation
time per item within trials. Accuracy increased
as presentation time increased, as before, but
reaction time decreased. Therefore, in between
designs, it is possible for the subject to change
speed-accuracy criteria and thus to make
between latency comparisons subject to
misinterpretation.

Sternberg Paradigm

The Sternberg paradigm is the most studied
paradigm in memory research that employs
latency measures. The method is simple: A
small number of items (digits, words, pictures,
and so on) within memory span is presented
to the subject one at a time. A probe item is
then presented, and the subject has to decide
if that item was in the set of study items or not.
The subject pushes one button for a "yes"
response, another for a "no" response, and
reaction time and accuracy are recorded. The
result that has been of most interest theoreti-
cally has been the reaction-time-set-size func-
tion. Often, reaction time has been a linear
function of set size, with equal slopes for
"yes" and "no" responses. This result led
Sternberg (1966) to develop a serial exhaustive
scanning model. The model is easily testable,
and several serious problems have been found;
for example, the model is unable to deal with
serial position effects (Corballis, 1967; Cor-
ballis, Kirby, & Miller, 1972), repetition effects
(Baddeley & Ecob, 1973), stimulus and
response probability effects (Theios et al.,
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1973), and nonlinear set-size effects (Briggs,
1974). There are alternative simple models that
have been set up to account for subsets of
the empirical findings, but it seems that each
of these is inconsistent with some data (Stern-
berg, 1975), Thus, we find an area of research
in which experiments are relatively easy to
perform and in which each of the competing
models (in an unelaborated form at least) is
falsified.

There are more serious problems though.
First, it is generally found that error rate and
mean reaction time covary (Banks & Atkinson,
1974; Forrin & Cunningham, 1973; Miller &
Pachella, 1973), but little attempt has been
made to relate accuracy and latency theoreti-
cally (Wickelgren, 1977). Second, it seems
likely that each of the models could be elabo-
rated to account for most of the empirical
effects (Townsend, 1974), as long as mean
reaction time is the only statistic considered,
so that no resolution at this level of analysis
can be expected. Third, the main statistic
used to describe reaction time is mean reaction
time. Because of this emphasis, few of the
models are able to account for properties of
reaction time distributions (Sternberg, 1975).
This is important because distributional
properties may prove to be decisive in evalu-
ating models (Ratcliff & Murdock, 1976;
Sternberg, 1975, Note 1, Note 2). For reviews
of this area of research, see Corballis (1975),
Nickerson (1972), and Sternberg (1969a,
1969b, 1975).

To model the Sternberg paradigm, I will use
the same assumptions used in modeling the
study-test paradigm. The probe is encoded,
and parallel comparisons are made between
the encoded probe and members of the search
set. The search set is approximated by the
memory set, each item having the same
normal probability density function N(v, TJ)
of relatedness for nonmatching comparisons.
The probability density function of relatedness
for a match comparison is N(u,ri), where u
varies with serial position and set size, v, a,
and 2 may vary with set size, and ij and s are
kept constant at the same values used in the
study-test paradigm. As before, a single
constant time is assumed for probe encoding,
response output, and so on.

Experiment 2 was performed to demonstrate

the way in which the theory is applied to the
Sternberg paradigm. The experiment was
designed to replicate typical patterns of results
found in the varied-set procedure while maxi-
mizing conditions for serial position effects
(fast presentation rate and short probe delay).
Serial position effects were sought because
changes in accuracy and latency as a function
of serial position can only be the result of
changes in the single relatedness parameter u,
as all criteria are fixed. Two subjects were
each tested for eight experimental sessions in
order to obtain reasonable estimates of error
rates and reaction time distributions.

Experiment 2

Method. Two paid student volunteers served as
subjects. Sequence generation, display, and response
recording were controlled by a PDP-12A laboratory
computer. The memory set was either three, four, or
five randomly selected digits, from the set zero to nine,
with no repetitions. The memory set was presented
sequentially at .5 sec per digit. One-tenth second
following the presentation of the last digit, a fixation
point was displayed, which remained on for .4 sec. The
probe digit immediately followed and remained on until
a response was made. Each list length was presented
equally often, and each serial position within each list
was probed equally often. Also, there were equal num-
bers of old and new probe items. There was a 3-sec delay
between trials, with a fixation point appearing for the
last .5 sec of that period. Responses were made by
depressing one of two buttons on a response box, right
hand for "yes" responses and left hand for "no"
responses. The subjects served in 8 sessions preceded
by 1 practice session. Each session consisted of 10 blocks
of 48 trials. Subjects were instructed to be as fast as
possible while maintaining high accuracy. Feedback
on accuracy performance was presented at the end of
each session.

Results. Figure 13 shows mean latency as a
function of set size for hits and correct rejec-
tions, together with linear least-squares re-
gression lines. These show that the basic
finding, namely, parallel, linear set-size-latency
functions, is replicated. Figure 13 also shows
serial-position-latency functions, which have
a large recency effect and replicate Burrows
and Okada (1971), Corballis (1967), Corballis
et al. (1972), and Forrin and Cunningham
(1973).

Figure 14 shows detailed fits of the mathe-
matical model to the data. As noted earlier,
the mathematical model was fitted to the
summary statistics (proportion correct and



84 ROGER RATCLIFF

RT

680

660

640

620

600

580

560

540

520

SET SIZE 3-*-1 T SIZE 4

2 3 4 5

SERIAL POSITION

RT

680

660

640

620

600

580

560

540

CORRECT REJECTIONS

^22s+586

RT=l8s + 531

1 2 3 4 5

SET SIZE (s)
Figure 13. Latency-set-size functions and latency-
serial-position functions for Experiment 2. (Error bars
are one standard deviation. RT represents mean
latency in msec.)

latency distribution parameters /* and T) by
weighted least squares for hits by set size and
serial position and for correct rejections by
set size. The encoding and response output
parameter TEE was kept constant across all
these conditions, but it also turned out that
to a good approximation, random walk bound-
ary criteria a and z and relatedness of probe-
nontarget item comparisons v were constant
across set size. Thus, latency and accuracy
for correct rejections changed as a function
of number of items in the memory set (no
additional degrees of freedom once a, z, and v
were fitted). Latency and accuracy for hits
varied only as a function of probe-target item
relatedness u (and memory set size); thus,
across serial position, the single parameter u
varied to produce fits to the three parameters

determined from the data, that is, latency
distribution parameters n and T and accuracy.
The fits to the data, although not perfect,
show no more than four deviations of theory
from data greater than about two standard
deviations out of 45 fitted statistics.

Figure 15 shows fits of the theoretical
distributions to the group reaction time
distributions. The theoretical distributions
capture the main features of the empirical
distributions, and changes in distribution shape
as a function of set size and serial position are
well modeled by changes in the size of memory
set and relatedness u.

Model Freedom

At this point, it may be argued that the
Sternberg exhaustive serial scanning model has
far fewer parameters than the random walk
model presented above. If mean reaction time
as a function of set size is to be fitted, then the
Sternberg model has 3 parameters and the
retrieval theory (for the above data) has 16
parameters (TEE, V, a, z, and 12 values of u)
or 7 if serial position effects are averaged.
However, if distributions are to be modeled,
the number of parameters in the Sternberg
model jumps to 9 (Sternberg, Note 1): 4
parameters for the comparison stage distri-
bution and 4 parameters for the base (en-
coding, decision, and response output) distri-
bution (plus one parameter for the yes-no
intercept difference). Further, if error rates
as a function of set size are to be fitted, then
perhaps as many as 6 more parameters have
to be added. The number of parameters in the
two models is now comparable. If serial position
functions are considered, then as noted earlier,
the Sternberg model is falsified, but the
retrieval theory does a good job. Thus, the
problems of model freedom and model com-
parison are not as simple and straightforward
as might be imagined.

Perhaps the major difference between the
retrieval theory and the Sternberg model can
be summarized as follows: The retrieval theory
(unlike the Sternberg model) provides an
intrinsic tie-up between reaction time and
accuracy, whereas the Sternberg model (un-
like the retrieval theory) can make the advance
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prediction that the reaction-time-set-size func-
tion is linear.

Further reduction in the number of param-
eters in the retrieval theory might be accom-
plished if the relation between relatedness u
and serial position could be described by a
few-parameter functional relation, for example,
exponential decay. I have not attempted to
fit such a functional relation because at
present it adds nothing theoretically. However,

if a theory of recency effects were developed,
then the prediction of relatedness as a function
of serial position would be an important test of
the conjunction of that theory with the re-
trieval theory.

Error Reaction Times

In typical reports of Sternberg varied-set
experiments, error reaction times are tarely
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Figure 14. Accuracy, latency distribution parameters (from the convolution model) tt and T, and related-
ness u as a function of serial position and list length for hits, together with accuracy and latency dis-
tribution parameters n and T as a function of set size for correct rejections in Experiment 2. (The filled
circles represent the theoretical values. For correct rejections, only number of processes in the search set
changes with set size; for hits, only relatedness u changes with serial position. All other theoretical
parameters [v, a, z, and TER] are fixed at the values shown in the bottom right-hand panel. Error bars
are one standard deviation, ms = msec.)



86 ROGER RATCLIFF

SET SIZE 3
CORRECT REJECTIONS

ffrh
SET SIZE 4

CORRECT REJECTIONS
SET SIZE 5

CORRECT REJECTIONS

SET SIZE 4
HIT S.P1

SET SIZE 5
HIT S P. 1

J • •

d °
m

SET SIZE 3
HIT S.P. 2

SET SIZE 4
HIT S P. 2

L

SET SIZE 5
HIT S.P.2

lit,
SET SIZE 3
HIT S.P 3

SET SIZE 4
HIT S.P. 3

SET SIZE 5
HIT S.P. 3

SET SIZE S
S P.5

SET SIZE 4
S P 4

4 5 6 7 .8 9 10

REACTION TIME (SEC)

.9 IO II

Figure IS. Group reaction time distributions (bar graphs) and theoretical fits (dots) for correct rejections
by set size and for hits by set size and serial position (S.P.) for Experiment 2. (These data and fits
should be compared with the distribution parameters M and ^ in Figure 14.)

presented because error rates are usually low,
so that error latencies are unreliable, and also
because error latencies are not of theoretical
interest. However, error latencies can be
useful in deciding between theories (Corballis,
1975; Murdock & Dufty, 1972). Corballis

(1975) reported that in his experiments using
the Sternberg procedure, error latencies were
generally smaller than latencies for correct
responses. In Experiment 2 above, error
latencies for Set Sizes 3, 4, and 5 were 940
msec, 760 msec, and 1,005 msec for misses
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(average of 902 msec) and 1,307 msec, 909
msec, and 1,055 msec for false alarms (average
of 1,090 msec), respectively. Predictions of
mean reaction time from the theory are far
too large. For typical values of parameters
used to fit Experiment 2 (« = .435, v = — .437,
a = .237, z = .099, and Set Size 4), reaction
time for false alarms is 2.05 sec; for misses,
it is 1.59 sec.

Error latency depends to a large extent on
the tails of the relatedness distributions. There-
fore, if the choice of normal distributions were
inappropriate, everything else in the theory
might still be tenable. For example, suppose
the relatedness distributions have extremely
long tails, so that about 1% to 2% of the total
probability density resides in these tails. Then,
theoretical values of latency and accuracy of
correct responses may not be altered
much, but error latency may change quite
significantly.

Figure 16 demonstrates the effect of the
shape of the distribution and tails of the
distribution on latency and accuracy. For
reference, the bottom panel of Figure 16 shows
the normal distribution of relatedness for a
nonmatching comparison with correct and error
latencies and error rate. The middle panel
shows the same normal distribution, with 3%
of the probability density removed and added
as a rectangular distribution over the range of
relatedness — 2 to +1. The error rate is
increased a little; correct latency is the same
as correct latency in the bottom panel, but
error latency is reduced to 1.3 sec, which is
near the experimental result.

The top panel of Figure 16 shows just how
far it is possible to change the assumption of
normal relatedness distributions without affect-
ing correct reaction time or accuracy. The
large rectangle contains 97% of the probability
density; and as in the middle panel, the small
rectangle, between —2 and +1 relatedness,
contains 3% of the probability density. With
this assumed relatedness function, mean
reaction time for correct responses decreases to
.62 sec, with the leading edge (M parameter in
the convolution model) of the reaction time
distribution increasing by 30 msec and the r
parameter in the convolution model decreasing
by 50 msec. The reaction time distribution is
still very similar in shape to those shown in
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Figure 16. Effect of the shape of the relatedness dis-
tribution on correct and error reaction time (RT)
and error rate. (The bottom panel shows a normal
distribution of relatedness; the middle panel shows a
normal distribution, with 3% of the probability density
forming a rectangular distribution between —2 and +1
relatedness; the top panel shows a rectangular distribu-
tion of relatedness with the same 3% tail as in the
middle panel).

Figure 15. The error rate drops to 1%, all errors
coming from the tail of the small rectangular
distribution that extends into positive related-
ness. But now error latency has decreased to
620 msec. The assumption of rectangular
distributions has some precedent in that Luce
(1963) and Krantz (1969) have both used
rectangular distributions in high-threshold
models to account for signal detection.

There are three conclusions that can be
drawn from this exercise. First, reaction time
distributions for correct responses are rather
insensitive to the shape of the relatedness
distributions so long as there is a lump of
probability density around the appropriate
relatedness value. Second, error rates depend
on the amount of probability density near and
greater than the zero point of relatedness.
Third, error latency depends critically on the
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Table 3
Theoretical Predictions for Latency and Accuracy oj Hits for Repeated Items
for Parameter Values in Experiment 2

Response type

Once-presented hit
Twice-presented hit
Once-presented hit
Twice-presented hit
Once-presented hit
Twice-presented hit

u

.35

.35

.435

.435

.55

.55

Accuracy

.966

.999

.988
1.0
.998

1.0

Mean
latency

686
566
605
514
592
465

M

433
429
420
415
404
399

a

47
44
42
38
36
32

r

253
137
185
99

125
66

Note. Mean latency, /i, <r, and T are in msec. Other parameter values are as follows: TER = 259 msec, v
= — .471, a = .237, z = .099, and memory set size = 4.

shape of the tail of the relatedness distribution
near the zero point of relatedness. Thus,
reaction time distributions and error rates are
reasonably independent of relatedness shape
so long as there is a lump of probability density
near the mean relatedness value of the normal
distribution used to fit the experimental data
and so long as there is a reasonable amount of
overlap. This shape-independent property
suggests that the correct focus of the model is
on error rates and correct response latencies
rather than on error latencies.

Reed (Note 4) has some evidence that the
signal distribution (in a signal detection
analysis of bilingual recognition) changes shape
over the time course of recognition. The signal
distribution starts off as multimodal, with a
signal peak in the middle of the noise distri-
bution, and then quite quickly becomes
unimodal. This kind of change in relatedness
distributions (the theoretical equivalents of
signal and noise distributions in signal detec-
tion analysis) would give rise to fast errors in
the retrieval theory and so may be an alter-
native to non-normal unimodal relatedness
distributions. Although this finding is a little
tentative, little is known about the time course
of recognition, and we should at least keep such
possibilities in mind.

One further point is that just as very long
outlier reaction times are often assumed to be
spurious, a certain proportion of errors may
also be spurious. For example, subjects often
report that they simply hit the wrong button.
Therefore, to get meaningful and stable error
latency data, it is better to work with a
paradigm with reasonably large error rates,

such as the study-test paradigm, rather than
a paradigm with error rates around 1% of the
total responses.

Repetition Effects

Baddeley and Ecob (1973) studied perform-
ance on memory sets containing repetitions
using a varied-set Sternberg procedure and
found faster recognition for repeated items.
The effects on reaction time (50 msec to 100
msec) were larger than those observed in the
study-test paradigm (30 msec to 40 msec;
see Table 2). Changes in accuracy were not
reported, probably because accuracy was near
100%, and there were not enough observations
to allow the detection of significant differences.

There are two possible ways to model the
effect of repetitions. For repetition effects in
the study-test paradigm, I assumed two
matching racing processes. The alternative is
to assume one representation twice as strong,
that is, a compressed memory set (presentation
of Digits 3238 would lead to Memory Set 238
with 3 stronger than 2 or 8). However, Baddeley
and Ecob (1973) ruled out this possibility by
noting that nonrepeated items from sequences
with repetitions were no faster than items
from sequences (of the same size) with
nonrepetitions.

To model the repetition result, I took
parameter values used in Experiment 2 and
computed accuracy and latency for one and
then two racing matching processes. Results are
presented in Table 3 and show that twice-pre-
sented items are between 64 msec and 120 msec
faster than once-presented items. Thus, the

JLMCC
Cross-Out



A THEORY OF MEMORY RETRIEVAL 89

theory gives quite good quantitative agreement
with the result presented by Baddeley and
Ecob (1973).

Discussion and Summary of the Sternberg
Paradigm

There are many variations on the Sternberg
paradigm published in the literature, but none
provide qualitative problems for the theory.
For example, stimulus probability effects in
the fixed-set procedure have provided problems
for the serial exhaustive scanning model
(Miller & Pachella, 1973; Sternberg, 1975;
Theios et al., 1973; Theios & Walter, 1974).
In Link's (1975) random walk model for
choice reaction time, stimulus probability
effects provide the basis of a successful test
of the theory. In effect, stimulus probability
affects the random walk boundary positions.
Therefore, it seems likely that the memory
retrieval theory could account for stimulus
probability effects in much the same way.

There have been several speed-accuracy
studies using the Sternberg paradigm, but
because the question of speed-accuracy trade-
off is central to the retrieval theory, the topic
is discussed later in a separate section.

To summarize, the Sternberg paradigm is
modeled in much the same way as the study-
test paradigm. Parallel comparisons between
the probe and members of the search set are
made. The decision process is self-terminating
on matches and exhaustive on nonmatches.
The search set is approximated by the memory
set, even though representations of items from
earlier trials (with probe-item relatedness
lower than probe-memory-set item related-
ness) may have to be included to account for
effects of recency of negative probes (Atkinson
et al., 1974). An experiment was performed
to demonstrate fits of the mathematical model
to data. All criteria were fixed as a function of
set size, and changes in accuracy and latency
of correct rejections as a function of set size
were well fitted as a result of search set size
changing (no free parameters to produce those
changes). The covariation of accuracy and
the shape of latency distributions as a function
of serial position was well accounted for by
changes in the single parameter u (relatedness
for a probe-memory-set item comparison).

The fits to error latency were poor, and this
led to an investigation of the dependence of
fits of the model on the form of the relatedness
distributions. Results showed that mean
latency and the shape of latency distributions
for correct responses are rather insensitive to
the shape of the relatedness distribution so
long as there is a lump of probability density
around the appropriate relatedness value;
further, error rate does not depend on the shape
of the relatedness distribution but on the
amount of probability density around the zero
point of relatedness; finally, error latency is
dependent on the tail of the relatedness
distribution near the criterion. Although the
fits to error latency were poor, it was shown
that better fits could be obtained by changing
the shape of the relatedness distribution, and
such changes could be made without affecting
predictions about correct latency or error rate.
Therefore, until a theory of the structure of the
memory trace can be developed that will
specify the relatedness distribution, the most
useful data for testing the mathematical model
appear to be error rates and latency distri-
butions for correct responses.

Supraspan Prememorized List Paradigm

It has been argued that in order to compare
reaction time results from experiments using
long lists (above memory span) with results
from experiments using short lists (subspan),
error rates should be low and approximately
the same. To produce low error rates with long
lists, prememorized lists have been employed.
An experiment that shows the way in which
the theory applies to the prememorized list
paradigm is the Burrows and Okada (1975,
Experiment 1) study. This experiment used
the Sternberg fixed-set procedure, with pre-
memorized memory-set items and list length
varying from 2 to 20. Each word in the positive
set was tested once in the test sequence for
that list, together with an equal number of
new words. Subjects had to press one button
to indicate that the test word was in the study
list, another button to indicate a new word.

The results showed parallel slopes for positive
and negative responses as a function of set size
and low error rates. Reaction time as a function
of set size showed an apparently discontinuous
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function. Subspan reaction times were fitted
by a linear function with a slope approximating
that typically found in the Sternberg paradigm
(35 msec to 55 msec per item). Supraspan
reaction times were fitted by a linear function
with a much lower slope (13 msec per item).
It was argued that the discontinuity was
evidence for separate long-term and short-term
retrieval processes. However, in the same
article, it was shown that a continuous function
(logarithmic) did almost as good a job of
fitting the data as the two linear functions.

I now demonstrate that the data from the
Burrows and Okada (1975) study can be well
fitted by the random walk retrieval theory,
which assumes only one kind of retrieval
process. It should be noted that in terms of the
retrieval theory, it is not necessary to have
low error rates in studying retrieval from long
lists. The study-test paradigm uses supraspan
lists, and error rates can be as high as 25%.

In order to fit the mathematical model to
the data, it is necessary to estimate reaction
time distribution parameters using the em-
pirical convolution model, as was done with
other paradigms. There were between 70 and
90 observations per set size per subject, which
is barely enough to allow stable estimations
of distribution parameters. The fits of the
convolution model were performed, and it was
immediately apparent that the a parameter
(the standard deviation in the normal com-
ponent of the convolution) was far larger than
in any fits to any other paradigm: The average
value of a across subjects and set size was 104
msec. The large value of a (and inspection of
the distributions) showed that the reaction
time distributions had slowly rising leading
edges, sometimes with short outlier reaction
times.

I was at a loss to explain why these reaction
time distributions were much less skewed than
usual until I noted that the test words were
presented verbally. A recent article by Morton,
Marcus, and Prankish (1976) suggests dangers
in this procedure. They demonstrated that if
the physical onset of a series of words is fixed,
the time for perception of the words can be
extremely variable. For example, the delay
between onset and perceptual center of the
spoken digits "seven" and "eight" differs by
80 msec. Burrows and Okada used two-

syllable words, and it is likely that the per-
ceptual centers of those words could vary even
more than 80 msec. Of course, if the main
reaction time statistic considered is mean
reaction time, then there is no problem—just
an addition of a little noise—but if distributions
are considered, then the use of verbal probes
can lead to fast (as well as slow) outliers.

To obtain better estimates of distribution
parameters, I trimmed off 5% of the fast
reaction times and refitted the convolution
model. The average value of cr was reduced by
47 msec to 57 msec. The main effect on the
other distribution parameters was to increase
r, leaving /t about the same as before trimming.
The retrieval theory was applied as in the
study-test and Sternberg paradigms. Parallel
comparisons are made between the encoded
probe and members of the search set. The
search set is approximated by the experimental
memory set, and each item has a normal
distribution of relatedness N(v, r]) for non-
matching comparisons. Each memory-set item
has a normal distribution of relatedness
N(u,rj) for matching comparisons, and the
variance parameters r? and s are kept constant
at the values assigned earlier.

The fits of the theory to the data are shown
in Figures 17 and 18. Figure 17 shows fits to
the empirical reaction time distribution param-
eters n and T for hits and correct rejections.
The error bars represent the maximum likeli-
hood standard deviation estimates in param-
eters but do not take into account any subject-
to-subject variability. Figure 18 shows fits of
the theoretical error rates to data, together
with behavior of theoretical parameters u, v, a,
and z as a function of set size. The fits of the
theory to data are by no means perfect. The
fact that the theory cannot be made to give
better fits demonstrates quite clearly that there
are fairly powerful nonobvious constraints on
the theory (before the fast reaction times were
trimmed, the best fit was much worse; pre-
dicted miss rates were half the size of those
shown in Figure 18).

Figure 18 shows values of u and v that allow
a d' measure of discriminability to be calculated
from d' = (u — v)/ri. d' starts at a value
of 5.3 at Set Size 2 and decreases to 4.8 by
Set Size 10 and remains at that value to Set
Size 20. The constancy of d' for longer lists
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can be interpreted as showing that the list
prememorization criterion produced equiv-
alent relatedness levels for the larger set sizes.
The continuous change in d' as a function of
set size shows quantitative continuity between
subspan and supraspan retrieval in item
recognition.

Much of the research done using this
paradigm has been performed within the frame-
work of the Atkinson and Juola (1973) model.
In the experimental procedure used by
Atkinson and Juola (1973), a study list was
memorized prior to the experimental session.
In any block of trials, test items consisted of
both new positive items and new negative
items, together with all previously presented
items. Results showed that repetition of
positive items made them faster and more
accurate, whereas repetition of negative items
made them slower and less accurate. The way
in which the theory would deal with these
results can be seen by referring to Figure 2.
First presentations of positives and negatives

msec
800

TOO

600

900

t J50
msec

300

250

200

150

HITS

would correspond to Processes 2 and 4,
respectively, and repeated presentations would
correspond to Processes 1 and 3, respectively,
thus leading to the observed pattern of results.

Several studies have investigated the situa-
tion in which there are different sets of memory-
set items stored in long- and short-term
memory (Forrin & Morin, 1969; Scheirer &
Hanley; 1974; Sternberg, 1969b; Wescourt &
Atkinson, 1973). The general consensus seems
to favor models that postulate parallel access
to short- and long-term sets (Wescourt &
Atkinson, 1976). For example, Wescourt and
Atkinson (1973) used a procedure in which a
30-word long-term set was memorized pre-
experimentally. In an experimental trial,
subjects were presented with a short-term set
of one to four words (or zero in a control
condition) before each test word. Test words
came from either the short- or long-term set,
with each having a probability of .25, or the
test word was a negative. The set-size-latency
function for probes from the short-term set

CORRECT REJECTIONS

2 4 6 8 10 12 W 16 * 20 2 4 6 8 K) 12 14 16 18 20

SET SIZE

Figure 17. Reaction time distribution parameters (jn and T) as a function of set size in Experiment 2 (Bur-
rows & Okada, 1975), together with theoretical fits (continuous lines). (Note that TBR = 420 msec. Error
bars are one standard deviation.)
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Figure IS. Error rates as a function of set size in Experiment 2 (Burrows & Okada, 1975), together with
theoretical fits (continuous lines). (Also shown are theoretical parameters «, v, a, and 2 as a function
of set size. Note that TEE = 420 msec. Error bars are one standard deviation.)

was roughly linear with a slope of 21 msec per
item. In contrast, the latency function for
probes from the long-term set (as a function
of short-term set size and excluding Set Size 0)
was nearly flat, 1 msec per item slope, and
about 100 msec slower than response to short-
term probes. Negatives showed the same
pattern of results with a slope of about 5
msec per item and responses 40 msec slower
than responses to long-term probes. The
specific model proposed by Wescourt and
Atkinson (1973) is similar to the decision
component of the retrieval theory, namely,
parallel independent searches of the short-term
and long-term sets, self-terminating on posi-
tives and exhaustive on negatives. To make the
two models identical, it is only necessary to
assume independent and parallel probe-
memory-set item comparisons within both the
long-term and short-term stores. Therefore,
because processing is the same for both sets
of items, there is no basis for separating short-
and long-term stores in terms of processing.

Another finding that is consistent with the
theory is the result that when material in the
short-term set is discriminable from material
in the long-term set, there is no effect of long-
term set size on reaction time to short-term
items and vice versa (Scheirer & Hanley,

1974). In contrast, when material in the two
sets is not highly discriminable, latency is a
joint function of short- and long-term set size.

Summary

Results from prememorized list procedures
are modeled in the same way as results from
the Sternberg and study-test procedures.
Application of the theory to the Burrows and
Okada (1975) study, in which list length was
varied from subspan to supraspan, showed
there is no need to assume separate retrieval
processes for subspan and supraspan item
recognition. Furthermore, in experiments where
short-term and long-term sets are searched
simultaneously, it seems that the best model
for the data assumes parallel search of both
sets in line with the retrieval schemes developed
in this article.

Continuous Recognition Memory Paradigm

In the continuous recognition memory
paradigm, single words are presented, and the
subject has to press one button if the test
word is new and another if the test word was
presented earlier in the test list. This task is
somewhat different from the three paradigms
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discussed up to this point in that items change
from negative to positive on presentation, and
the search set is continually increasing in size.
The principal independent variable is lag
between successive presentations of an item,
and accuracy and latency are measured.

Okada (1971) performed two experiments
that investigated performance on this task.
In both experiments, mean reaction time as a
function of lag was well approximated by a
negatively accelerating exponential. I have
fitted the mathematical model to Okada's
(1971) Experiment 2 to show how the theory is
applied. In his Experiment 2, items were
presented once, twice, or three times, but only
once- and twice-presented items were fitted
because there were not sufficient data to
perform distributional analyses on thrice-
presented items. Even though the paradigm
is different in many respects from the study-
test and Sternberg paradigms, the same
processing assumptions are made. The memory
set changes from 0 to 150 in the course of a
block of trials, but in order to approximate over
the whole block, the search set size was set
at 40 (though values between 30 and 60 would

not change the fits very much). At any test
position in the sequence, the test item can be
either new or old with lag values of 0, 1, 2, 4,
or 6. Therefore, in the theory, all criteria are
fixed and only relatedness u may vary with
lag. Thus, any single value of u must fit both
accuracy and reaction time distributions
(through the parameters n and r). Empirical
results are presented in Figure 19 for propor-
tion correct and reaction time distribution
parameters M and T, together with theoretical
fits, as a function of lag. In these fits, i and ij
are fixed at .08 and .18 as before. The three
experimental statistics (accuracy and latency
distribution parameters/* and T) are adequately
fit with just one theoretical parameter u,
which varies as a function of lag.

Thus, the pattern of results found in the
continuous recognition memory task can be
modeled in the same way as results from the
study-test and Sternberg paradigms.

Speed-Accuracy Trade-off Paradigms

Experiments to study speed-accuracy trade-
off are usually performed within the context

<r§

ms
160

140

120

100

80

1.00

.96

2 .92
tE
£ .88

.84

V = -0 .52
0 = 0. 13
Z = 0.025

2 3 4 5 6

ms
160

140

120

no

90

ffi
.60 Z

Q
LJ

.50 <t

40

LJ
o:

CR 0

LAG

I 2 3 4 5 6 CR

Figure 19. Proportion correct, reaction time distribution parameters M and T, and relatedness u for hits
as a function of lag for Okada's (1971) Experiment 2. (Theoretical fits are shown by open circles; also
shown are correct rejection data [CR]. The number of processes assumed to be in the search set was
40, and TEE = 520 msec. Theoretical parameters 11, a, and z are as shown in the figure.)
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of a particular paradigm, for example, choice
reaction time and the Sternberg paradigm
(Pachella, 1974), the Brown-Peterson para-
digm (Reed, 1973), sentence processing
(Dosher, 1976), cued recall (Murdock, 1968),
paired associate recall, and recognition (Wickel-
gren & Corbett, 1977). Because the topic is
central to the theory developed in this article,
it is dealt with in this separate section.

In the introduction, speed-accuracy trade-
off methods were partitioned into two classes
(excluding latency partitioning). Information-
controlled processing refers to the usual
reaction time method in which the subject sets
some limit on the amount of information
required for a response, and time of response
is not limited. Experimentally, the amount of
evidence required for a response can be
manipulated using instructions (e.g., speed vs.
accuracy) or payoffs. Time-controlled process-
ing refers to the class of experimental methods
where the time of response is experimentally
controlled using methods such as response
signals, deadlines, or time windows.

Information-Controlled Processing

Each of the preceding item recognition
paradigms is an example of information-
controlled processing. To check that the
retrieval theory is capable of accounting for
results obtained when speed-accuracy criteria
are changed, I shall show that changes in
boundary criteria are sufficient to account for
the kinds of changes observed in experimental
data when speed-accuracy conditions are
changed. Banks and Atkinson (1974) used the
method of payoffs to investigate speed-
accuracy effects in the Sternberg varied-set
procedure. They found that with payoffs
stressing accuracy, error rates were about 1%;
whereas with payoffs stressing speed, error
rates were between 10% and 30%, the slope
of the latency-set-size function was halved,
and the intercept was reduced by about 200
msec. To model this pattern of results, it is
assumed that under speed conditions, the
random walk boundaries are moved close
together; whereas under accuracy conditions,
the boundaries are moved relatively far apart
(see Figure 5 for an illustration).

To check that the numerical values generated

from the retrieval theory are compatible with
the size of the effects obtained by Banks and
Atkinson (1974), typical parameter values
used in Experiment 2 were taken, and random
walk boundary position parameters a and z
were reduced to .04 and .015, respectively.
Latency for both hits and correct rejections
decreased by 300 msec, and average error
rates increased from 2% to 18%. Thus, the
theory produces effects that are quite con-
sistent with results from the payoff method.

Payoff or instruction is usually a between-
sessions variable; therefore, criteria can change
between conditions, and such experiments do
not provide a strong test of the theory.
Nevertheless, the demonstration that speed
and accuracy can covary over a wide range of
values is important in evaluating models of
retrieval processes. For further discussion of
these methods, see Pachella (1974) and
Wickelgren (1975,1977).

Time-Controlled Processing

In this section, it is shown that time-
controlled processing methods produce data
that provide a strong test of the retrieval
theory. One example of time-controlled pro-
cessing is the response signal method that was
developed to avoid the problem that criteria
may change between conditions. In essence,
the subject is given the probe followed by a
signal to respond presented a variable amount
of time after probe onset (Reed, 1973, 1976;
Schouten & Bekker, 1967). Reed (1976) used
the response signal method to investigate the
time course of recognition in the Sternberg
varied-set procedure. One, two, or four letters
comprising the memory set were presented
sequentially. Following probe onset, a signal
to respond was presented at a lag varying
from 7 msec to 4,104 msec. Subjects were
required to respond "yes" or "no" as quickly
as possible after the signal and to make a
confidence judgment on how confident they
felt at the time of response. There were two
analyses of major interest: d' as a function of
response signal lag and response latency as a
function of signal lag. It was argued that the
first of these indicated the time course of
accumulation of evidence on whether the probe
was a member of the memory set, and the
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second gave evidence that the decision is based
on the termination of a discrete process.
Before discussing the results, I will derive an
expression for the increase in accuracy as a
function of signal lag from the theory.

In order to make the problem tractable, let
us assume that the match and nonmatch
boundaries are placed far from the starting
point, so that in the range of signal lags
considered here, the diffusion process can be
considered unrestricted. Also, let us consider
only Memory Set Size 1. In an unrestricted
diffusion process, the probability density
function h(x, t) at position x and time t with
drift f and variance in the drift *2 is given by

h(x,f) =
1

(7)

(Feller, 1968, p. 357). In the theory, however,
relatedness £ has a normal distribution (see
Equation A24). Therefore, in order to calculate
the distribution of evidence as a function of
time, we must integrate over the distribution
of relatedness N(u, TJ) and find

-j<3-{fl!/s!< :
2irs*t~ Vfcnj"8

y(x, t} =

Thus, the distribution of evidence is given by a
normal distribution N[_ut, V/(r;2/ + s2)]. For
two distributions of relatedness, N(u, rj) for
matches and N(v,ri) for nonmatches, d' is
given by

d1 u — v
(variance)1

u —

+ i!/(»?2<)]'
(9)

Now as t—><x>, the value of d' asymptotes
(ASY) at ^'ASY — (u— »)/ij, that is, d' of the
original relatedness (as expected, given a large
amount of time). Thus,

d' =
d'ASY (10)

Equation 10 gives an expression for the
growth of d' as a function of time for Memory
Set Size 1. For Set Sizes 2 and 4, the decision
rule must be taken into account: If at the time
of the response signal, there is evidence from
at least one process greater than the starting
value 2, then a "yes" response is produced;
otherwise, a "no" response is produced (see
Equation A23). Therefore, to calculate d'
values for Set Sizes 2 and 4, it is necessary (a)
to calculate d' values from Equation 10, (b) to
use the d' values to give values of hit rate and
false alarm rate, (c) to combine the hit rate
and false alarm rate according to the decision
rule, and (d) to thus produce a hit rate and
false alarm rate for the combined process from
which a d' value can then be calculated.

Let p be the hit rate and q the false alarm
rate for Set Size 1 at some time t (derived from
the d' calculated from Equation 10). Then,
for n processes, the probability of a nonmatch
w is given by

W = 1 - (1 - q)n, (11)

and the probability of a hit r is given by

?)«-1, (12)

by analogy with Equation A 19. Thus, r and w
depend on the particular values of p and q, so
that for a particular discriminability value
d' = (u — v)/r], the discriminability for n
processes depends on the criterion chosen, and
subjects could maximize the d' value by
adjusting the criterion. The dependence of
discriminability d' on criterion value is rather
an undesirable property; however, the de-
pendence is rather small. Consider d' = 1.85;
values of p and q that can give this value are
p = .86, .75, and .54 and q = .22, ,12, and .04,
respectively. Using Equations 11 and 12,
values of d' for n = 2 are 1.51, 1.52, and 1.54,
respectively, and for n = 4 are 1.14, 1.20, and
1.27. Thus d' is reasonably robust to the choice
of criterion. In Reed's study, hit rates were
usually high (80% to 90%), so that these
larger p values were used in the following fits.

Figure 20 shows a plot of the accuracy-
response-signal-lag data obtained by Reed
(1976), together with fits from Equation 10
and d' values for Set Sizes 2 and 4, calculated
using Equations 11 and 12. The encoding and
response output parameter was 220 msec, and
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Figure 20. d' as a function of signal lag for a speed-accuracy experiment by Reed (1976) using response
signals in the Sternberg varied-set procedure. (The broken line represents data, and the smooth curves
represent fits ^derived from Equations 10, 11, and 12].)

<*'ASY for Set Size 1 was set at 3.2. It should be
noted that each of the three theoretical curves
was fixed in shape by the initial choice of j2

and r;2 made at the start of fitting the study-
test paradigm, so that shape is described with
no free parameters.

Reed (1976) has argued that the response-
latency-signal-lag function is particularly use-
ful in discriminating models. These curves
show a minimum at some particular lag,
depending on type of response (yes-no) and
list length. It was argued that these provide
evidence for the termination of a discrete
process that leads to an accelerated response
latency for a short period. The difference
between the minimum for "yes" and "no"
responses was used to argue for differential
termination of the "yes" and "no" decision
process. These two results are exactly what the
theory predicts if it is now assumed that the
diffusion process boundaries are close to the
starting point of the process but not close
enough to significantly affect the shape of the
theoretical accuracy-signal-lag curves: It
should be noted that the latency minima
correspond to a significant increase in response
latency rejections (100 msec < T < 500 msec
only accepted; see Table 1 of Reed, 1976),
and this may be a problem for interpretation
of these results.

Confidence Judgment Procedures

The study-test paradigm employs a 6-point
confidence judgment procedure for response
recording. Up to this point, the task has been
modeled as though it used a yes-no procedure
because results from a yes-no procedure show
the same pattern of data. In order to model
(qualitatively) the confidence judgment pro-
cedure, it is necessary to assume a variable
internal temporal deadline. In terms of the
theory presented here, the only information
available about the "strength" of the item
during the recognition processes the compari-
son time. Thus, if a comparison is taking a
long time, the subject may reduce his confi-
dence and respond on a lower confidence key.
It should be noted that subjects are quite
good at responding to external deadlines
(Reed, 1976) and so may be able to set internal
deadlines. Thus, confidence judgment results
may be explained in terms of subject-set
internal deadlines on the comparison process.

Summary

Speed-accuracy trade-off is a phenomenon
that can probably be induced in all reaction
time experiments. Therefore, any retrieval
model that deals adequately with both latency
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and accuracy must have mechanisms at the
heart of the model to deal with this trade-off.
The theory developed here was designed with
this in mind, and so speed-accuracy relations
are fundamental. The theory is quite consistent
with results from several speed-accuracy pro-
cedures and fits results from the response signal
procedure (Reed, 1976) especially well. In
the theory, two variance parameters (if and s2)
were fixed throughout fits to previous para-
digms. The shape of the accuracy-signal-lag
function was determined solely by the ratio of
those two parameters (s^/if), and the fit was
excellent.

Discussion

Comparison and Summary of Paradigms

Each of the experimental paradigms con-
sidered so far has been discussed more or less
in isolation from the others. Therefore, it is
appropriate to give a brief summary and
comparison of experimental parameters be-
tween paradigms. The study-test, Sternberg,
prememorized list, and continuous recognition
paradigms are all assumed to have the same
processing stages (see Figure 1). The encoded
representation of the probe is compared in
parallel with members of the memory search
set. The search set is defined as those items
determining processing rate and is to be
conceptualized as the set of resonating elements
in the framework of a resonance metaphor.

Each comparison process is formalized as a
diffusion process. In the diffusion process,
evidence for a probe-memory-set item match
is accumulated over time: the greater the
evidence (greater the resonant amplitude), the
more likely a match; the lower the evidence
(smaller the resonant amplitude), the more
likely a nonmatch (see Figure 2). The rate of
accumulation of evidence is determined by the
relatedness of the probe to a memory-set
item (see Figure 3), where relatedness is a
single-dimension variable onto which all
structural, semantic, and phonemic (etc.)
information is mapped. The decision process is
self-terminating on a comparison process
match, leading to a "yes" response. For a
"no" response, all comparison processes must
have terminated with a nonmatch.

The search set was assumed to be the
memory set for the study-test, Sternberg, and
prememorized list paradigms, .though it was
noted that this is only an approximation
because there is evidence that items from earlier
lists enter the comparison process. For the
continuous recognition memory paradigm, a
search set size of 40 was assumed.

Table 4 shows parameter values for the
four item recognition paradigms for the two
conditions in each experiment in which the
largest value of d' and the smallest value of d'
were obtained. The theoretical value of d'
represents the difference in the size of reso-
nance between an item in memory and the
probe when the probe matches and when the

Table 4
Parameter Values for Four Item Recognition Paradigms for the Two Conditions Giving
the Largest and Smallest d' Values

Largest d' vaJue

Paradigm

Smallest d' value

a z u

Study-test (Experiment 1)
Sternberg (Experiment 2)
Prememorized lists
Continuous recognition

.15

.24

.16

.13

.04

.1

.09

.03

.45

.55

.4

.6

-.44
-.47
-.55
-.52

5.0
5.7
5.3
6.2

.16

.24

.33

.13

.04

.1

.11

.03

.19

.35

.36

.35

-.38
-.47
-.52
-.52

3.2
4.6
4.9
4.8

360 msec
260 msec
420 msecb

520 msec0

• In the response signal study by Reed (1976), TEH = 230 msec and d' = 3.2.
b The test words were spoken, and spoken words have a larger stimulus onset to perception than visually
presented words.
° Stimuli were presented on an IBM typewriter advanced by a solenoid, the pulse triggering the solenoid,
which started a timer. There is a 250-msec delay (approximately) from timer start to stimulus onset with this
apparatus (compare Experiments 1 and 2 of Murdock et al,, 1977, with stimuli presented on a computer and
stimuli presented on a typewriter).
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probe does not match the item. Therefore, to
calculate asymptotic d' for any experiment, it
is necessary to obtain a hit and false alarm rate
from the d' value, to use Equations 11 and 12 to
derive hit and false alarm rates for the com-
bination of n processes in the memory set, and
then to use the derived hit and false alarm rates
to estimate asymptotic d'. It turns out that in
all four experiments, asymptotic accuracy is not
much more than the accuracy obtained in the
experiment, which suggests that subjects are
working with an emphasis on accuracy.

Parameters show no more variation within
a paradigm than a factor of two; and between
paradigms, variations are no more than a
factor of three. Values of v, that is, probe-
memory-set item nonmatch relatedness, are
relatively invariant across paradigms, showing
that subjects tend to set a relatively constant
relatedness criterion with respect to the non-
target item relatedness (noise) distribution.

The encoding and response output param-
eter (TER)' seems to fall in the range of 250
msec to 350 msec, so that the other 250 msec
to 500 msec is comparison and decision time.
This division of processing time seems much
more reasonable than that proposed by other
models, for example, 35-msec comparison and
400-msec encoding, decision, arid response
output (Sternberg; 1966) or 5-msec comparison
and 600-msec encoding, decision, and response
output (Murdock & Anderson, 1975).

It must be apparent that such cross-
paradigm comparisons may prove most interest-
ing when the same group of subjects is used in
each of the paradigms. Furthermore, such
comparisons may prove useful in studying
the locus of individual differences.

Relation to Neural Network Models

A large part of this article lias been concerned
with the development of a theory that inte-
grates a. number of experimental paradigms.
In this and the following section, the comple-
mentary problem is treated, that of the relation
between this theory and other more global
theories. I consider neural network models in
this section and semantic network models in
the next section.

Perhaps one of the simpler neural network
models is the model developed by J. A.

Anderson (1973), which deals with retrieval
from short memorized lists. It should be stated
at the outset that this model is not to be viewed
as definitive but rather as the first step of a
continuing and developing research program
(Anderson, 1972, 1976; Anderson, Silverstein,
Ritz, & Jones, 1977; Borsellino & Poggio,
1973; Cavanagh, 1976; Kohonen, 1976;
Kohonen & Oja, 1973). The basic structure of
the model is fairly simple. It is assumed that
what is of importance is the simultaneous
pattern of individual neuron activities in a
large group of neurons. The patterns interact
in the process of storage, so that memory is
simply the sum of past activities in the system.
In the recognition process, the probe input
trace is matched to the memory. If a certain
level of positive evidence is accumulated, a
"yes" response is made, and if a certain level
of negative evidence is accumulated, a "no"
response is produced. The memory is formally
represented by a vector of N elements, and a
memory trace /,• is represented as a specific
vector of length N. If there are K traces, then
the memory vector is constructed by

K

*=£/*.
~ 4-1 ~

(13)

Then, the match between the input probe /
and the memory vector is given by the dot
product/-5 (or matched filter), that is, each
element of the input vector is multiplied with
the corresponding ;element of the memory
vector, and the sum of these values represents
the amount of match.

If this description is rephrased slightly, then
the recognition model shows remarkable
similarity to the retrieval model developed in
this article. For example, the comparison
process can be viewed as resonance, and if
each element of the dot product is accumulated
successively through one filter (not two), then
the resulting process is a random walk. Thus,
the two theories are closely related.

However, there are some problems with
Anderson's (1973) model. The model suffers
many of the problems of strength theory in
that there are no separate records of each
memorized item, and activities simply sum,
as in strength theory. Therefore, the model is
not capable of performance levels shown by
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subjects in judgments of frequency (Wells,
1974) and list discrimination (Anderson &
Bower, 1972).

I noted earlier that this model is part of a
continuing research program, which can be
seen in J. A. Anderson (1976) and Anderson
et al. (1977). In these articles, it is shown how
network models can deal with associations,
probability learning, feature analysis and
decomposition, and categorical perception.
Therefore, it may be a useful future exercise to
attempt to relate in some detail these two
theories: neural network theory and the
retrieval theory presented here.

<.
Relation to Semantic Network Models and
Prepositional Models

Semantic processing models. There is no
doubt that the human memory system is
highly structured. One approach to modeling
the structural complexity of the system has
involved the use of semantic networks. The
use of a network representation has been in
part a consequence of the appealing digital
computer metaphor for the human information
processor. However, just because this form of
representation is appealing and most useful in
setting out structural relations, it does not
mean that process models suggested by a
network representation are true or useful.
This point can be illustrated as follows.

Rips, Shoben, and Smith (1973) developed a
set theoretic model of semantic representation.
Later, Hollan (1975) pointed out that set
theoretic representations can be translated
into networks, that is, there exists an iso-
morphism between the two representations.
However, Rips, Shoben, and Smith (1975) in
a rejoinder made the important point that the
choice of representation can lead to sub-
stantive processing differences. For example,
network models explain reaction time effects
in terms of the time for retrieval of pathways
between nodes; whereas for set theoretic
models, reaction time effects are determined
by comparisons of semantic elements. Thus,
for any network model, there is at least one
other isomorphic representation that suggests
alternative processing assumptions.

Much of the data used to support semantic
processing models makes use of reaction time

and, in particular, the statistic mean reaction
time. One of the main thrusts of this article
has been to demonstrate that mean reaction
time is of limited use as a statistic. Also mean
reaction time can often be misleading because
models based on mean latency may be contra-
dicted by further analyses of reaction time
data (e.g., Ratcliff & Murdock, 1976). Further-
more, in many item recognition studies, it is
found that accuracy and latency covary, and
this seems to be true in many semantic
memory studies (e.g., Collins & Quillian, 1969;
Meyer, 1970; Rips et al., 1973). Therefore, any
model that purports to account for latency
effects should also account for accuracy effects
and be capable of dealing with speed-accuracy
trade-off.

Process models of retrieval latency that are
derived from network models assume that
latency is a function of number of links
traversed. Latency for "yes" responses is well
modeled using this assumption, but latency
for "no" responses poses serious problems.
For example, in verification of statements such
as "a robin is a mammal," latency can be as
much as 200 msec slower than for statements
in which the two nouns are more unrelated
semantically, for example, "a robin is a car"
(Rips et al., 1973). In attempting to verify
the latter, one might expect that more links
would be searched than in the former (e.g.,
Collins & Quillian, 1969), but as shown above,
the derived prediction is incorrect. It is interest-
ing to note that the relation between latency
and accuracy as a function of "semantic
relatedness" is similar to the relation between
latency and accuracy as a function of related-
ness in the retrieval theory developed here,
namely, extreme relatedness leads to fast
reaction times and high accuracy.

Collins and Loftus (1975) have proposed
a comparison process for semantic processing,
wherein evidence is accumulated until either
a positive or negative criterion is reached,
whereupon a response is initiated. This com-
parison process belongs to the class of random
walk processes (as Collins and Loftus point
out) that forms the basis of the retrieval
theory developed here. Collins and Loftus
(1975, Table 1) listed qualitatively different
kinds of evidence that can contribute to a
decision. I argued earlier that qualitatively
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different kinds of information contribute to
relatedness in item recognition. Therefore, it
seems that the two points of view converge,
and the theory developed earlier at least
qualitatively extends into the domain of
semantic processing.

Propositioned models. Propositional models
(J. R. Anderson, 1976; Anderson & Bower,
1973; Kintsch, 1974; Rumelhart, Lindsay, &
Norman, 1972; Schank, 1976; see also Cofer,
1976) are close cousins of semantic network
models but have slightly different aims in
that the central task is to model sentence or
text representation. The ancestry of these
models is in linguistic theory, automata theory,
and the theory of formal languages (Chomsky,
1963). Therefore, it is not surprising that a
major goal of these theories has been suffi-
ciency, that is, the ability of the theory (at
least in principle) to deal with and represent
the complexities of human language and
knowledge. Thus, there has been less attention
paid to processes underlying comprehension
and retrieval, although the work of J. R.
Anderson (1976), Anderson and Bower (1973),
and Kintsch (1974, 1975) are important
exceptions. Even so, Anderson and Bower
(1973, p. 6), in their formulation, selected
processing assumptions on the basis of their
ease of implementation on a digital computer.
In particular, serial search of network struc-
tures was assumed for matching or comparison
processes.

J. R. Anderson (1974) developed two mathe-
matical models for retrieval of propositional
information. One model assumed independence
of processing stages (the usual search model),
whereas the other assumed "complete de-
pendence," in which search time was exponen-
tially distributed with the time constant equal
to the sum of time constants for individual link
search times. Anderson claimed that the two
models gave similar predictions for mean
latency, but it is easy to see that they give
opposite predictions for the behavior of skew-
ness of the latency distributions. As the number
of links increases, for complete independence,
skewness decreases; whereas for complete
dependence, skewness increases. In general, in
word recognition experiments, as mean latency
increases, skewness of the distribution in-
creases. Therefore, the complete-dependence

assumption seems most consistent with data.
The assumption of complete dependence
certainly does not represent serial processing.
Rather, it is more consonant with the view
that the greater the number of links, the less
evidence there is for the required relation
holding (for in a network theory, eventually
a pathway can be found between any pair of
nodes). Thus, the assumption of complete
dependence in processing seems halfway
toward adoption of a decision process similar
to the random walk class discussed earlier.

J. R. Anderson (1976) has gone a stage
beyond earlier models in that the production
system is the first attempt to model control
processes in a model that makes close contact
with experimental data. However, the process-
ing assumptions underlying comparison pro-
cesses still reflect the influence of the computer
metaphor, and predictions for latency and
accuracy come from separate sources (e.g.,
fan size and deadline, respectively) and are not
closely interrelated. This is an important
problem because most of the data the model
makes contact with are reaction time data,
and it can be seen that accuracy and latency
covary in many of the data presented (J. R.
Anderson, 1976).

This discussion suggests that the retrieval
theory presented in this article may be capable
of representing the retrieval and decision
processes involved in processing semantic and
more highly structured information (proposi-
tional and text). Thus, a task for the future is
the integration of the retrieval theory and
theories of semantic and text memory structure.

General Conclusions

I have presented a theory of memory
retrieval that not only applies over a range of
paradigms but also deals with experimental
data in greater depth and more detail than
competing models. The theory provides a
rationale for relating accuracy, mean reaction
time, error latency, and reaction time distri-
butions. Such relations have not been dealt
with explicitly before. Because the theory
applies over a range of experimental paradigms,
it provides a basis for the claim that the same
processes are involved in each of these para-
digms, allowing theoretical comparisons to be
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made between paradigms, and thus sets the
stage for experimental comparison of para-
digms. Also, the theory makes contact with
several other more general theories, namely,
neural network, semantic memory, and prepo-
sitional models. The success of the theory so
far, and the potential shown for integration
with other general models, leads to the hope
that some measure of theoretical unification
may soon be achieved.
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Appendix

In this section, the mathematical model used
to relate the theory to data is formulated. The
organization is as follows: First, the theory of
the random walk (gambler's ruin problem) is
described as an introduction to the diffusion
process. Second, the theory of the diffusion
process is outlined, and two ways of deriving
first-passage time distributions and error rates

are indicated. Third, equations for the maxi-
mum of n processes (exhaustive processing)
and the minimum of n processes (self-termin-
ating processing) are derived.

In the development of any model, one has
to select aspects of the data, that is, summary
statistics, as points of contact between the
model and data. In item recognition, the
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statistic generally used is mean reaction time,
but as argued earlier, mean error rate and
reaction time distribution statistics are more
useful. Thus, the following development is
aimed primarily at deriving expressions for
distributions and error rates.

Random Walk

Traditionally, the theory of this process is
centered around the example of a gambler
who wins or loses a dollar with probabilities
p and q, respectively. His initial capital is Z
and his opponent's capital is A — Z. The
game terminates when his capital becomes A
or 0 dollars (Feller, 1968, p. 342).

It is simple to rephrase the problem in
terms of a feature-matching, memory com-
parison process (cf. Huesmann & Woocher,
1976). Suppose the features of a probe item
are compared with the features of a memory
item, and the probability of a match is p and
of a nonmatch is q (= 1 — p). Then, if Z more
nonmatches than matches are required for a
probe-memory item nonmatch, and A — Z
more matches than nonmatches are required
for a probe-memory item match, this process
is isomorphic to the gambler's ruin problem.
I shall discuss the random walk within the
feature match framework.

One of the main methods for finding solu-
tions for stochastic processes consists of
deriving difference equations for the process
and solving these equations with respect to
certain boundary conditions. In our feature
comparison process, let qz be the probability
of a probe-item nonmatch, given starting
point Z, match at A, and nonmatch at 0. Then,
after the first trial, either Z ~ 1 or Z + 1
steps are required for termination with a
nonmatch. Thus,

probability of a nonmatch is given by

qz = pqz+i + qqz~i, (Al)

provided 1 < Z < A — 1. For Z = 1 and
Z = A —• 1, the first trial may lead to termi-
nation, so we define

go 1 and = 0 (A2)

to be boundary conditions on the random
walk. Thus, the probability of nonmatch qz
satisfies Equations Al and A2.

Using the method of particular solutions,
the solution to Equations Al and A2 for the

qz =

when

1 —j, when q = p.
A

This is the required expression for error rate.
The next result needed is the first-passage
time distribution for a nonmatch (the distri-
bution of number of steps to nonmatch).

Let gz.n denote the probability that the
process ends with the wth step at the barrier 0
(nonmatch at the wth feature comparison).
After the first step, the position is Z + 1 or
Z— l f o r l < Z < X — 1 and n ^ 1 ; thus,

gZ,n+l = PgZ+l,n (A4)

Boundary conditions for this difference equa-
tion are given by

gO.n = gA,n = 0

and (AS)

go,o = 1, gz,o = 0, when Z > 0.

Then, the difference Equation A4, with
boundaries given by Equation AS, holds for
all 0 < Z < A and all « > 0.

The solution to Equations A4 and AS is
given by

£Z,n =
2n+1

~A~f

X
.irk . irk .

cos —7 sin — sin
k<A/2

(A6)

The derivation of Equation A6 is shown in
Feller (1968, chap. 14) and involves deriving
the probability generating function for first-
passage times, then performing a partial
fraction expansion on that expression.

In order to obtain the expressions equivalent
to Equations A3 and A6 for a probe-memory
item match, q and p are interchanged and Z
becomes A — Z. It should also be noted that
gz,» is not a probability density function, but
that the sum of the first-passage time proba-
bilities for matches and nonmatches is a
probability density function.

Diffusion Process

It was noted earlier that the discrete
random walk could be used to represent a
feature comparison process. However, I have
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chosen to use the continuous random walk
(Wiener diffusion) process for several reasons.
First, my conceptual bias is to think of in-
formation or evidence accumulation as a
continuous process rather than a discrete
process. Second, for the continuous random
walk, drift and variance in drift are in-
dependent, and because these and other
parameters of the model are relatively de-
coupled, manipulation is simpler. Third, it is
faster and cheaper to integrate numerically
over continuous functions than to sum over
discrete functions.

Before proceeding, I will introduce the
following convention: F and G will represent
first-passage time distribution functions, and
/ and g will represent first-passage time density
functions. These are not normalized (i.e., are
not probability distributions or density func-
tions), but they may be normalized by division
by the appropriate error or correct probability
7. On the other hand, H and h will represent
proper probability distribution and density
functions. Subscripts + and — will refer to
the boundaries giving match and nonmatch,
respectively.

It was noted earlier that the Wiener diffusion
process (Brownian motion) is the result of
taking the limit as step size tends toward zero
in the random walk process. This limiting
process will now be described.

In order to apply the random walk in the
case where the number of events per unit time
is large, but the effect of each event is small
(e.g., molecular collisions in Brownian motion),
one can take the discrete expressions and find
the limit directly. Let the length of the in-
dividual steps S be small, the number of steps
per unit time r be large, and (p — q) be small,
with the constraint that the following expres-
sions approach finite limits :

(/»- (A7)

It is necessary for the two expressions to have
finite limits. For example, if s2— » 0, then the
process is deterministic; if s2— » «, then the
process is infinitely variable, and the proba-
bility of terminating at each boundary is 1/2
with zero time delay. If £— » 0, there is no
drift ; if £ — -> ± °o, there is no time delay before
the boundary is reached. The probability of a
nonmatch is obtained by taking the limit in
Equation A3 and is given by

where Z —> z/8 and A —» a/8. 7+(£), the proba-
bility of a match, can be obtained by replacing
z with a — z and £ with — £. Then, 7+ + y_ = 1.

The limiting form of the first-passage time
distribution is given by

vX 2J
t-i

sin ( — )«-*\ a )
'. (A9)

g-(t, £) is a function of /, a, z, £, and s2, but it is
only necessary to express it as a function of t
and £ for further calculations in this section.
The first-passage time distribution for a match
g+(t, £) can be found by setting £ = — £ and
2 = a — z in Equation A9. Again, note that
g-(t, £) and g+(t, £) are not probability density
functions, but g+(t, $ + g.(t, £), g-.(t, £)/7-(£),
and g+(t, £)/7+(£) are probability density
functions.

It was stated earlier that Equation A9, the
first-passage time distribution, can be derived
by solving the diffusion equation. The diffusion
equation can be derived from Equation A4,
using the limiting expressions in Equation A7
for % and s2. Equation A4 becomes

dt

Methods for the solution of this equation (Cox
& Miller, 1965) lead into the enormous litera-
ture on the solution of partial differential
equations (Churchill, 1963; Tikhonov &
Samarskii, 1963). By substituting g-(t, £) from
Equation A9 in Equation A10, it can be seen
that g-(t, £) is a solution of Equation A10.

The first-passage time density function
g- (t, £) turns out not to be the best expression
to use in evaluating the maximum and mini-
mum of a number of similar processes. Instead,
the first-passage time distribution function

G-(t,Q f'e-V,
Jo

Qdi? (All)

proves most useful. Now,

G-(t,

2k sin [l ~

however, this series converges slowly, and a
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more useful alternative is given by

2ksln(—
\ a

T — max Ti is
!<<<n

-. (A12)

^ a2 /

From this expression, it can be seen that

Relatedness and Diffusion

The main assumption made to relate diffu-
sion and relatedness is that relatedness is
represented by drift £ in the diffusion process.
Thus, the greater the relatedness, the greater
is the value of drift; the less the relatedness,
the less the drift. The scale on which related-
ness is measured is not absolute; rather, it is
only sensible to talk about the degree of dis-
criminability. The subject sets the zero point
(or criterion) of relatedness, so that the average
drift for a matching comparison is toward the
match boundary, and average drift for a
nonmatching comparison is toward the non-
match boundary. The scale of relatedness is
linear in drift, and therefore, the scale is
defined in terms of the comparison process.
There are many other possible scales and
relations between relatedness and drift, but
this one seems the most natural. I will use £
to represent relatedness of probe-memory-set
item match comparisons and v to represent
relatedness of probe-memory-set item non-
match comparisons, where v usually has the
opposite sign to £.

Decision Process

The decision process is self-terminating on
comparison process matches and exhaustive
on nonmatches. The distributions of '"yes"
and "no" responses therefore correspond to the
distributions of minimum and maximum
completion times of the n comparison processes.

Maximum of n processes. Let TI, . . . , Tn

be independent observations on n pro-
cesses, with probability density functions
hi(t), . . . , hn(t) and distribution functions
H\(t), , . . , Hn(t). Let us assume each
process terminates with probability one.
Then, the probability distribution function of

t)
Pr( max Ti ^ 0

l < t < «

Pr(Tt ^ / ..... Tn ^ t)

Pr(rt ^ t) . . . Pr(Tn ^ /)

(assuming independence)

(A13)

Then, the probability density function of the
maximum of n processes is given by

^maxW = H maxW

= II Hi(t) L jj~. (A14)

For misses and correct rejections, we are not
dealing now with probability distribution
functions because sometimes a process may
terminate at the wrong boundary. Therefore,
it is necessary to find the maximum of n
processes, given that there are different proba-
bilities of termination associated with each
process. Let G,-_(2) be the first-passage time
distribution function for a nonmatch of process
i, and Gmax(i) be the first-passage time distri-
bution function for the maximum of the n
nonmatch processes. Then,

Gmax(0 = P,(T ^ /)
n

from Equation A13. Also,
n7- = n 7»-,

(A15)

(A16)

where 7,- is the probability of the ith process
nonmatch, and 7_ is the probability that all of
the comparison processes produce nonmatches.

For correct rejections, the model will be
applied, with each comparison assumed to
have the same first-passage time distribution
G-(t, v). Thus, for correct rejections (CR), the
first-passage time distribution function FCR(I)
is given by

GL"(*. v). (A17)
Also, for the single nonmatching process when
a memory-set item is probed, let the first-
passage time distribution function be G_ (t, £) ;
thus, for misses (M),

Fu(f) = G-(t, k}G-n~l(t, v). (A18)

Minimum of n processes. For "yes" re-
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sponses (hits and false alarms), only one
comparison process has to terminate with a
match; therefore, all combinations of the
number of match terminations have to be
considered. For example, if only one match
occurs, then the time for that comparison is
the time for the decision ; if two matches occur,
then the decision time is the minimum of those
two comparison times. Therefore, it is neces-
sary to sum over all possible combinations of
processes finishing. First, let us consider the
minimum of n processes finishing. Then, the
distribution function Hmin(t) of T — min T,

l< i<"

is found as follows :

Now

..... Tn>f)

= Pr(Tl>t)...Pr(Tn>t)

Therefore,

(A19)

Let Fmin(t) be the first-passage time distri-
bution function (not a probability distribution
function) for the self-terminating process, and
let pi be the probability of a match. Then,

Pr(T>t)=E E [Pr(r><|», ij)
y=l all subsets

of size j

ri p.-if d-w:*if
-II fc=*l

-
all subsets

of size j

x f c l ( l - f c ) , (A20)
{-,'! h=hi }

using Equation A19. As before, when the
probe was not a memory-set item, all nonmatch
comparison first-passage time distribution
functions GL (t, v) are assumed equal. Then, for
false alarms (FA),

n(n- l ) r2G + ( f , iQ _

where G+(t, v) can be found by setting
z = a — z and v — — v in Equation A12.

Let the first-passage time distribution of a
probe being compared with a memory-set item
(i.e., for a match) be G+(t, (•). Then, for hits
(H), the first-passage time distribution func-
tion is

rc+(*.»oiM1 L^rJI
(A22)

At this stage, we should note that both y+(v)
and 7_(£) are usually small (.1 or less) and
G±(t) tends to 7± as t becomes large ; therefore,
Equations A21 and A22 are adequately ap-
proximated by the first few terms in the series.

The probabilities of a correct rejection and
miss are given by

PCS, = 7-"(") = 1 —
and (A23)

= 1- PH.

(A21)

The approximation in Equation A22 was
checked by calculating FH(°°) and by making
sure that the value is equal to pn.

Relatedness Distributions

A critical assumption is that relatedness
enters the diffusion process as the drift param-
eter £. In the last section, it was noted that
there should be a distribution of relatedness
and therefore a distribution over drift values
(different from the variance of the diffusion
process s2). The simplest choice used with most
precedence (Murdock, 1974, p. 28) is the
normal distribution. This means that the
distribution function G(f) and accuracy y for
the diffusion process have to be averaged over
the relatedness distribution before being used
to calculate distributions and proportions of
hit, miss, correct rejection, and false alarm
responses.

Let relatedness £ be distributed N(u, r;) and
relatedness v be distributed N(v, if). Then, we
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can compute first-passage time distribution Similarly, 7±(w) and y±(v) can be calculated
functions G±(t, u) and G±(/, v), using using Equations A24 and A25, respectively,

substituting 7±(£) and y±(v) for G±(t, £) and

/

°° 1 . G-tO, v), respectively.
G±(t' {)VfcH * (A24) The equations developed to this point are00 sufficient for the calculation of error rates and

and reaction time distributions.
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