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Dataset Selection



Data universe

7,800+ cryptocurrencies (as of Jan 2021)1

500+ cryptocurrency exchanges2

30+ public APIs available3; we looked into Kraken and Bitfinex as they had downloadable 
data without needing an API

BTCUSD is the most traded pair

Data availability: many new currencies have only been in existence for < 3 years

Data is mostly already clean, but missing when exchange is down or trade volume is zero

1 https://e-cryptonews.com/how-many-cryptocurrencies-are-there-in-2021/
2 https://www.cryptimi.com/guides/how-many-cryptocurrency-exchanges-are-there
3 https://github.com/public-apis/public-apis#cryptocurrency



Data source choice: Bitfinex is more liquid 
and has more complete data than Kraken

Bitfinex
Kraken
Difference
(Bitfinex - Kraken)

*Data was for BTCUSD from one sampled day (3/19/21)
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BTC/ETH/XRP-to-USD are the most data- 
complete currency pairs across 2019-21

We filtered for all currency pairs whose data 
availability percentage was above 60% for 
2019, 2020 and 2021 (only 5 pairs qualified), 
then plotted their availability.

From the data, BTC, ETH and XRP to USD are 
the most data-complete coins. This is 
confirmed by the fact that they are also the 
top traded coins on coinmarketcap.com by 
volume and market capitalization.

Data availability (percentage non-missing) at 
the minute level for the most data-complete 

currency pairs in the Bitfinex data



Hourly-level data cleaning and availability 
was done by syncing ‘close’ timestamps

Exact filtering on on-the-hour timestamps    +/- 2 minute timestamp leniency

Resolution technique for syncing “close” time stamps (+/- 2 minutes). This yielded much higher 
data availability percentage than minute-level data, as expected.

Data availability (percentage non-missing) at the hour level
calculated using two methods



Data Exploration



Time period of observations

Pairs Trading

● Start: 2020-01-01
● End: 2021-04
● Frequency: by hour

Single-Asset Models

● Start: 2018-01-01
● End: 2021-04-01
● Frequency: by minute & hour



Correlation matrix (hourly data), 
Sept. 2020 - Jan. 2021

Returns Open Price



Time series correlations (BTC, ETH, XRP)

We observe extremely weak correlations at the minute level



Hourly returns (8 tokens)

34 hour lag

Top 4 Lagged Corrs:



Co-integrated pairs
Pairs where p-value is < 0.05:

(ETH, XLM) 
(DOT, ADA) 
(LTC, XLM)

Co-integration p-values (plotting p < 0.98)

XLM

ETH



Methods



Stat arb: pairs trading strategy

1. Calculate price ratios of cointegrated pairs for all time points in training set (e.g. ‘eth’ 
divided by ‘xlm’)

2. Get 6 hour moving average of ratios
3. Get 72 hour moving average and standard deviation of ratios
4. Calculate z-score
5. If | z-score | > 2, sell the overperforming coin, buy the other

e.g. If ratio = eth price / xlm price, then 
if ratio is low (z < -2), buy ‘eth’ and sell ‘xlm’

If ratio is high (z > 2), sell ‘eth’ and buy ‘xlm’



Time series regression: autocorrelation and 
seasonality

● We use lagged regression features up until some 
lookback time period to predict the target

● Feature engineering can then be performed (as a 
function of the lookback) to account for non-linear 
signals and interactions

● Seasonality settings will require further adjustments to 
make the model predictions more granular

Autocorrelation and seasonality
Model: neural network*

Autocorrelation
Model: regression

Actual log returns
Predicted log returns
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*NeuralProphet library from Facebook



Deep learning approaches

Underway:

● RNNs (recurrent neural networks)
○ LSTMs (long short-term memory)

Approaches to try next:

● CNNs (convolutional neural networks)
● Transformers



Evaluation



● Rolling-window cross-validation approach
● Accounting for seasonality or trends in model performance over time

Evaluating models: train, validate & test



● Need to account for factors such as transaction costs and market impact
● We aim to use Backtrader as our backtesting framework
● It allows us to define data feeds to feed our models and also account for transaction 

costs, initial investments and the possibility of going long/short and trading on margin

Evaluating strategies: backtesting



Metrics for evaluation

We use different sets of metrics to evaluate our models and our strategies

● For the model level, given that we focus on a regression task, we focus on the 
validation adjusted R2

● For strategies, we consider the risk-adjusted return as our benchmark and so consider 
the Sharpe ratio as our strongest metric

● To get a sense of our downside, we also consider our max-drawdown and win-ratio


