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1 Strategy & Background

1.1 Strategy Overview

We apply modified versions of PCA-based mean-reversion statistical arbi-
trage techniques described in ”Statistical Arbitrage in the U.S. Equities
Market” on Russell2000 equities data from 2018 to 2021. We use a vari-
able medium-term holding period on the order of days to months. On each
trading day we compute with a 60-day trading window a standardized returns
matrix, a correlation matrix, apply principal component analysis to generate
a variable number of risk factors, and finally computed s-scores that act as
trading signals. We expected a Sharpe ratio between 1 and 2.5. Our strategy
achieved a Sharpe ratio of 1.238 compared to the index’s Sharpe ratio of 0.65,
indicating that our strategy has potential for real world alpha generation.

1.2 Mean Reversion & Pairs Trading

We utilize the popular investment strategy of statistical arbitrage, which re-
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lies on the principle of mean reversion. This is the idea that the returns of
two assets that whose returns are highly correlated are after adjusting for
beta (typically because they have similar characteristics or are in the same
industry, such as Visa and Mastercard stocks) will revert around a mean
value. When assets are overpriced (relative to another stock or index), we
short them, and when they are underpriced we buy them. This is known
as pairs trading; for each we trade we enter we long one equity and short
another.

Let P and Q represents correlated stocks. Let Pt and Qt represent their
corresponding price time series. We model the system as follows:

dPt

Pt

= αdt+ β
dQt

Qt

+ dXt (1)

where the α is a drift term (the change of the average value of a stochastic
process), and Xt is a mean reverting process. We assume changes in α is
small enough relative to changes in Xt that we can ignore it. We model Xt

with a parametric Ornstein–Uhlenbeck (OU) process:

dXi(t) = κi(mi −Xi(t))dt+ σidWi(t) (2)

1.3 Statistical Arbitrage

Our goal in statistical arbitrage is to generate a collection of pair trades of
equities relative to factors that explain systematic returns. Here we ignore
net positions in the index (which are expected to cancel out) and generate
a long/short portfolio of single stocks. The net decomposition of any stock
into systematic and idiosyncratic components is expected to look like:

dPt

Pt

= αdt+
n∑

j=1

βjF
(j)
t + dXt (3)

where F
(j)
t is the return of the jth systematic risk factor associated with

the Russel2000 market. This model allows us to separate out the systemic
component of returns so that we can focus on the idiosyncratic component,
which is modeled by a (pure) mean-reverting process. We used PCA to
generate these risk factors, as described below. We expected a Sharpe ratio
between 1 and 3 with this strategy.
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2 Data

2.1 Dataset

The dataset we were using was the Russell 2000 US equities data from 2018
- 2021 from the Center for Research in Security Prices (CRSP), downloaded
via Wharton Research Data Services. We filtered for columns including ticker
id, date, ticker name, end-of-day trading price, volume, bid, ask, and open
price. An example cross-section of the data file is below:

2.2 Data Issues

A small problem we had with the data was that 72 out of the 2000 tickers
were missing values returns values. Upon manually looking up a couple of
these tickers, it was determining that they did not go bankrupt but simply
had data omissions - we excluded these stocks from our universe. We also
tried obtaining obtaining options data for each ticker to incorporate volatility
in signal generation, but had issues matching the ids, so we abandoned the
idea given time constraints.

3 Investment Universe Selection

3.1 Asset/Index Selection

For our paper, we focus on the US equity market due to availability of data,
prior research, and applicability to us as amateur investors in equity. Initially
we were working with the S&P500 Index; however, we ended up using the
Russell 2000 equities index. We believed that focusing on small-capitalization
stocks could potentially provide an edge due to crowding in stat arb strategies
on large cap stocks. We exclude stocks missing data in our date range.
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4 Modeling

4.1 Standardized Returns Matrix

We use historical stock price data on a cross-section of N=1928 stocks for the
last M=60 days. On each trading day, we construct a standardized returns
matrix by first computing daily returns:

Rik =
Si(t0−(k−1)∆t) − Si(t0−k)∆t)

Si(t0−k∆t)

(4)

where Sit is the price of stock i at time t adjusted for dividends and ∆t =
1/252 to model one trading day. The standardized returns are given by:

Yik =
Rik − R̄i

σ̄i
(5)

where R̄i is the mean return of stock i across the trading window and σ̄i is
the standard deviation of the return of stock i across the trading window. A
cross-section of a sample standardized returns matrix is shown below:
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4.2 Correlation Matrix

Next, we form a correlation matrix, computing the correlation of each ith
stock’s return to all other stocks’ returns in the trading window, defined as:

ρij =
1

M − 1

M∑
k=1

YikYjk (6)

The parameter M, the trading window, is sensitive; we chose it to be 60 days
based on prior research so that you get a complete enough picture of the
past to form relevant relations, while leaving behind data that is economi-
cally irrelevant. The cross-section of a sample generated correlation matrix
is depicted below; larger dots indicate larger magnitude of correlation, blue
dots indicate positive correlation, and red dots indicate negative correlation.
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4.3 Principal Component Analysis

The principal component analysis is the process of computing a set of or-
thonormal eigenvectors for a set of data points; each eigenvector is the direc-
tion of a line that minimizes the average squared distance between the points
and the line. PCA-based risk factors are known to be economically signif-
icant and not biased towards large capitalization equities. The risk factors
generated can be viewed as long-short portfolios of industry sectors.

Using PCA to create the factors has advantages: the first is that it allows us
to arrive at a set of uncorrelated factors, and the second is that it does not
require us to make assumptions about the factors that drive stock returns,
allowing us to design our factors more empirically.
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Above we demonstrate the variance in the data explained by each our prin-
cipal components. There are trade-offs in using choosing how many factors
to use; using more factors results in a more descriptive risk model with lower
variance and high bias, which does lower the opportunity of profit (especially
when considering transaction costs). Using less components results in less
mean-reversion and higher residual volatility. We use a variable number of
principal components; We chose to set a threshold for variance explained as
between 65% and 85% and use that number of principal components.

4.4 Factor Model

For each jth eigenvector (ranked by eigenvalue in decreasing order), we then
compute the corresponding eigenportfolio:

Q
(j)
i =

v
(j)
i

σ̄i
(7)

where Qi represents the dollar amount invested in stock i. The corresponding
eigenportfolio returns are:

Fjk =
N∑
i=1

Q
(j)
i Rik (8)

These factors Fjk represent returns of benchmark portfolios representing sys-
tematic risk factors. Now we can break down any stock into a projection on
the m factors and the residual term Xt.

Note that:

β̄j =
N∑
i=1

βijQi = 0 (9)

So the trading portfolio is market-neutral. This means that our portfolio is
uncorrelated with the PCA-obtained factors explaining the market return,
and is only driven by idiosyncratic returns.
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4.5 Parameters

In establishing our parameter values, we used values utilized in prior research
works as well as manually played around with values with the data from 2018.
Since we are using data from prior to t to estimate the residual process Xt,
our simulation technique was out-of sample.

Parameter Name Value

Look Back Period, M 60 days
Threshold of Variance Explained by PCs 65% - 85%

% of stocks in universe for trading 25% of stocks, w/ prediction errors ≈ 0
OU Lag 1 (AR-1 model)

Proportionality Factor λ 1
S-score cutoff for entering position, so 1.25
S-score cutoff for closing position, sc 0.75

Transaction Cost 0.005%

4.6 Benchmark

On the left is the return of the Russell2000 index over time; this is our bench-
mark return that we compare to. On right is a 14 day trailing volatility
measure for the index from 2018 - 2021. Note the massive spike in volatility
in March of 2020 as COVID-19 affected markets.
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4.7 Results & Evaluation

The returns of our strategy are mapped against the benchmark returns below.

We established Sharpe Ratio as our main metric of evaluation.

Sharpe Ratio =
Rp −Rf

σp
(10)

where Rp is the portfolio return, Rf is the risk free rate, and σp is the portfolio
return standard deviation. Our strategy was able to achieve a Sharpe ratio
of 1.238 vs. that of 0.65 for the Russell2000 index.
We also computed Maximum Drawdown:

MDD =
P − L
P

(11)

where P is the peak value and L is the trough value. Our strategy achieved
a max drawdown of 0.89 vs. the index’s 4.45; a significant improvement
which comes from the fact that our peak was much higher during the March
COVID crash, which is a significant improvement. However, we do see that
our strategy did not perform well during this period; our return crashed with
the market, meaning our portfolio was not zero-beta. This implies that our
model might not hold up during periods of high volatility.
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5 Alpha Model

5.1 Alpha Source & Intuition

Alpha is the portfolio return in excess of market of returns. We aThe source
of our alpha relies on a couple of principles.

1. Asset prices can be highly correlated over a period of time, and are ex-
pected to remain correlated in the near future. We exploit relationships
between stocks to generate our alpha.

2. The returns of two highly correlated assets is expected to revert around
a mean. This means that some stocks are temporarily overpriced rela-
tively (which we can long), and others underpriced (for us to short).

3. We can construct factors that drive market returns via the principal
component analysis on historical returns data. This then allows us to
construct a zero beta portfolio (uncorrelated with the market).

5.2 Signal Generation

On every trading day, we compute s-scores for each stock i, defined as:

si =
Xi(t)−mi

σeq,i
(12)

where the equilibrium variance is:

σeq,i = σi

√
τi
2

(13)

where τi is the mean reversion time. We open a trade when the s-score
exceeds a minimum threshold so and close the position when a max threshold
sc is reached. Intuitively, we only open trades for extreme deviations from
the mean, (indicating an outlier that should revert to the mean), and close
trades when they get close to the mean.

5.3 Relative Betting

Our strategy does not take directional positions, but rather relative positions
in equities in relation to the index. Our trading signals are generated sys-
tematically (as opposed to via individual fundamentals). Our factor model
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allows a zero beta portfolio, resulting in a low-volatility investment strategy
that is hopefully uncorrelated with market returns.

6 Portfolio Construction

The Profit and Loss equation for our strategy is given as

Et+∆t = Et + Etr∆t+
N∑
i=1

QitRit − (
N∑
i=1

Qit)r∆t+
N∑
i=1

QitDit/Sit −
N∑
i=1

|Qi(t+∆t) −Qit|ε

(14)

Qit = EtΛt (15)

where Et is equity in the portfolio at t, Qit is the dollar amount invested
in stock i at time t, r is the risk free rate, ∆t = 1/252, Dit is dividends
received on stock i from time t, Sit is the price of stock i at time t, ε is the
transaction cost, and λt is a proportionality factor for leverage. In sizing our
instruments, we allocate a fixed amount to a portfolio to start ($1M) and
make trades proportional to equity in the portfolio, with no max position.

Additionally we only make trades on the middle 25% of stocks whose re-
turns are reasonably close to the factor model’s prediction, in the 25% of the
following histogram. These stocks are well described by the factor model but
still have idiosyncratic behavior.
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7 Risk Management Philosophy

7.1 Inherent Risks

There are multiple types of risk in statistical arbitrage. For example, there is
individual stock risk, for a company to exit the market or be marged/acquired.
There is a crowding effect, where many market participants employ similar
stat arb models - affecting the price of the equities traded. There is risk that
the model no longer is descriptive of the market in the future - for example if
mean reversion principles break down or systematic risk factors change very
quickly. A market movement that seems very unlikely but goes against model
prediction can impose heavy losses that are amplied by leverage, potentially
causing a margin call and forcing liquidation.

7.2 Risk Measurement & Management

We use our evaluation metrics of the Sharpe ratio and Max drawdown as
inherent measures of risk. Inherently our portfolio should be zero-beta, but
in periods of large volatility (such as during the March 2020 crash) this seems
to break down. To protect against large losses, we added a daily stop loss
that closes any position that loses 30% in a day.

8 Execution Discussion

8.1 Real World Considerations

When taking this strategy from class project to real world trading, there
would probably have to be a number of changes made. One is the issue of
trading frequency would likely have to be adjusted to fit a firm’s particular
strategy - perhaps this means minimum and maximum holding periods. An-
other change would have to be that the data used to create the model should
look at longer term data, rather than data over the course of just a few recent
years. In the real world, we might try to increase the s-score thresholds to
only trade on very confident pairs, and use lots of leverage to obtain good re-
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turns. Better risk management is definitely needed in a real system. Finally,
more fine-tuned parameters would likely lead to better results.

9 Retrospective Discussion

9.1 Challenges

We faced a number of challenges in designing and implementing this project.
We both came in with a very limited knowledge of quantitative trading and
statistical arbitrage; along the way we learned a lot about implementing real-
istic trading strategies. Initially, we had issues getting an approved Wharton
Research Data Services account for the data. Our lack of experience with R,
which is what this is project was coded in, definitely served as a pain point.
Dealing with bugs in our code (such as the first row in our returns matrix be-
ing all zeros), and translating equations into an actual implementation were
all difficult challenges, but we walked away learning a lot!

9.2 Concepts Learned

Some concepts we grew more familiar with include: mean reversion, pairs
trading, statistical arbitrage, Ornstein–Uhlenbeck processes, the principal
component analysis, standardized returns, correlation matrices, systematic
factor models, zero-beta portfolios, signal generation, and backtesting.

9.3 Future Work

If we had more time, we would make some changes and extend upon the work.
The parameters we discuss earlier can be continually tuned to produce better
returns. Different measures of volatility can be considered by the model; for
example volatility measures that consider “fat tails” and “volatility cluster-
ing.” This could help to more effectively control the portfolio’s risk. The
strategy could incorporate assets outside the RUSSELL 2000 index to hedge
portfolio risks. Alternative factor models, such as synthetic ETFs as factors,
can be explored. Signal generation could consider not just mean reversion for
a given stock, but also other indicators that might be relevant to it it’s short
term idiosyncratic returns (such as trading volume). All in all, this project
was a great learning experience. We are excited to see where it might go!
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