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High Frequency Trading as an MDP

Since HFT strategies rely on taking and providing liquidity when it
is appropriate, we make the modeling assumption that order book
dynamics are a markov process. Hence we may formulate a HFT
strategy as a Markov Descion Process in the following manner:
▶ We will assume discrete time intervals which will be

determined by our time-scale, T .
▶ For each time step 0 ≤ t ≤ T we have

▶ st := (Ot, qt) where Ot is the order book history at time t over
a look back period steps and qt is the amount of the asset the
agent currently holds.

▶ at ∈ {T, P,N} where T is the act of taking liquidity, P is the
act of providing liquidity, and N is the act of doing nothing.

▶ rt+1 is an appropriate reward function.
This framework generalizes to a multidimensional asset space.
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Reinforcement Learning

There are two main approaches to solving RL problems:
value-based methods (ie. Q-learning) and policy search methods
(ie. policy gradient).
▶ Deep Q-Learning (DQN) - minimizes MSBE, off-policy,

sample efficient, generally good for discrete and low
dimensional action and state spaces

▶ Proximal Policy Optimization (PPO) - maximizes expected
return, on-policy, sample inefficient, generally good for
continuous action and state spaces

We tried DQN and PPO:
▶ DQN - showed good performance
▶ PPO - abandoned due to low performance and high

computational cost
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Data

We pulled top of the book data from MayStreet aggerated by
second, from 9:30AM to 11:30AM for the first 5 months of 2021
for the 5 S&P 500 stocks with the highest beta.
This amounted to a massive data set with well over 100 million
rows.
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Strategy Overview
We assume
▶ The starting account balance of our agent is the cash value of

6000 shares at the opening price of a given security
▶ The agent is able to trade with two times leverage
▶ All entered positions must be exited after a two minute

holding time
▶ At any given second the agent is able to buy the minimum of

100 shares of the ask size and sell the minimum of 100 shares
and the bid size.

▶ The agent must always buy at the ask and sell at the bid price.
▶ The agent must maintain a net worth greater than 0. I.E. the

value of its positions plus the cash held as balance must be
greater than 0. Otherwise, trading must end.

▶ The agent can trade from 9:32 am to 10:02 am.
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Strategy Overview (count.)

Given these assumptions, our agent must optimize buy, sell, and
hold actions to maximize the following reward function:

rt = 1t<Tα ∗ returnt + 1t=Tβ ∗Rt

Where t is current second, T is the final time step and at is the
action at time t, returnt is the two minute return of at−120, RT is
the overall return, and α and β are hyperparmeters .
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Technical Features and Feature Engineering
▶ The order book data: bid/ask price, size, number of providers;

adjusted volume
▶ Technical indicators: SMA, EMA, RSI, ROC, TRIX, PPO,

PVO, AROON, DPO, MACD, SRI
▶ Re-normalize some of the indicators against the first value

encountered in the beginning of each episode, to increase
performance when feeded into NN

▶ Maxmial Fourier modes are mostly 0 over short horizons, and
requires huge prepossessing time.

▶ Custom NN structures as feature extractors, with every obs as
a F by L matrix, where F is the number of features and L is
the amount of history we allow the agent to look back.
▶ Large MLP networks
▶ LSTM + MLP (1D LSTM running over the L dimension)
▶ Transformer + MLP (with the same obs matrix feeding into

encoder and decoder)
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Sanity Check with Zigzag patterns

▶ We create a counterfactual order book with oscillating linear
patterns ranging from 10 to 20, with 0 gap between the bid
and ask price.

▶ Implemented technical indicators and normalization as
specified before.

▶ Adapted holding periods (5s) for to match the period of
oscillation (20s).

▶ Comparison between strategies with/without forced
liquidations.

▶ Trained different models with similar amount of computing
cost.
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Sanity Check with Zigzag patterns

MLP without forced liquidation
Define rewards for every step

Figure: Portfolio Value Figure: Actions
Actions = 0: short, 1: buy, 2: hold
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Sanity Check with Zigzag patterns

MLP with forced liquidation
Define rewards for every step

Figure: Portfolio Value Figure: Actions
Actions = 0: short, 1: buy, 2: hold
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Sanity Check with Zigzag patterns

LSTM + MLP with forced liquidation
Define rewards for every step

Figure: Portfolio Value Figure: Actions
Actions = 0: short, 1: buy, 2: hold
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Sanity Check with Zigzag patterns

Transformer + MLP with forced liquidation
Define rewards for every step

Figure: Portfolio Value Figure: Actions
Actions = 0: short, 1: buy, 2: hold
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Sanity Check with Zigzag patterns

MLP without forced liquidation
Define rewards for only the terminal step as the total return

Figure: Portfolio Value Figure: Actions
Actions = 0: short, 1: buy, 2: hold
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Sanity Check with Zigzag patterns

MLP with forced liquidation
Define rewards for only the terminal step as the total return

Figure: Portfolio Value Figure: Actions
Actions = 0: short, 1: buy, 2: hold
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Sanity Check with Zigzag patterns

LSTM + MLP with forced liquidation
Define rewards for only the terminal step as the total return

Figure: Portfolio Value Figure: Actions
Actions = 0: short, 1: buy, 2: hold
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Sanity Check with Zigzag patterns

Transformer + MLP with forced liquidation
Define rewards for only the terminal step as the total return

Figure: Portfolio Value Figure: Actions
Actions = 0: short, 1: buy, 2: hold
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Sanity Check with Zigzag patterns

▶ MLP might be sufficient as compared to more complicated
networks, with the added benefit of being more consistent. We
can always add non-linearity in the feature engineering step.

▶ Forced liquidation after a short period of time helps the agent.
▶ There is room to try different reward functions, might be the

key to the agent’s performance.
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Simulation Method
To train our RL agent we built an environment using Open AI’s
gym interface. Each episode of training loads a random day and
random symbol’s data from a train or test time dataframe.
Compared to other RL projects, such as FinRl and other RL
environments, our environment has the following advantage:
▶ Homogeneous Trading Horizons: By sampling from the same

time of day, as compared to randomly sampling along a stock
path, our episodes contain very similar market micro structure

▶ Data Density: Most other academic projects use daily data.
Since we use data aggregated on the second level, the data is
far more dense.

▶ Realism: In the real world, high frequency trading models
should be adapt at providing sustainable profit across a variety
of symbols. Hence the variety of symbols allows train a more
realistic model.
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Learned Model Trading Results

Figure: Model Results Using Multiple Symbols
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Learned Model Trading Results (cont.)

Figure: Model Results Using Only AMD

If we take the previous return sequences, we obtain a sharpe ratio
for the 1 second time period of 0.00229. Annualized, assuming you

can only trade half an hour a day, that is a sharpe ratio of 1.54.
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Learned Model Trading Results (cont.)

Figure: Model Results Using Only AMD Using A Larger Model

If we take the previous return sequences, we obtain a sharpe ratio
for the 1 second time period of 0.0131. Annualized, assuming you
can only trade half an hour a day, that is a sharpe ratio of 8.82.
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Data Augmentation using GANs [WKKK20]

▶ Autoencoder: embedding and recovery networks - stacked RNN and
a feedforward network

▶ Adversarial Network sequence generator and sequence discriminator
components - RNN as generator and a bidirectional RNN with a
feedforward output layer for the discriminator

Source: [Jan20]
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GAN Results - 1
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GAN Results - 2
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GAN Results - 3
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Next Steps

▶ Use the synthetic data to train the agent
▶ Analyze and compare the effect of reward function choice
▶ Finalize hyperparameter tuning
▶ Train more specialist traders.
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