Quality and Textual Analysis Strategy for Predicting Stock Price Change

Rachel Ahn, Matthew Tan, Kimberly Te, Andrew Matangaidze, and Jialu Sun

Overview

- Background
- Objective
- Dataset & Signals
- Baseline Results
- Next Steps

Background

Literature Review: Fundamentals

The Excess Returns of "Quality" Stocks: A Behavioral Anomaly (Bouchaud et al 2016)

- Systematic bias in analyst expectations when accounting for company quality
- Dataset: 136967 companies (global)

 $mistake_{i,t} = \beta Quality_{i,t} + controls_{i,t} + \epsilon_{i,t}$

	Mistake		Forecast		Realized	
	(1)	(2)	(3)	(4)	(5)	(6)
Op. Cash Flows	063***	069***	012**	005	.05***	.064***
	(-6.2)	(-6.4)	(-2.4)	(-1.1)	(6.5)	(7.1)
Rolling volatility		.14***		.13***		0075
0		(14)		(32)		(-1)
Book to Market		044***		011**		.033***
		(-3.8)		(-2.5)		(3.6)
r2	.27	.28	.24	.29	.26	.27
Ν	136967	133917	136967	133917	148975	145486
Month FE	YES	YES	YES	YES	YES	YES
Cluster	Firm	Firm	Firm	Firm	Firm	Firm

Literature Review: Text Analysis

On the Importance of Text Analysis for Stock Price Prediction (Lee et al., 2014)

- Dataset: 8k reports
- Features included unigram words and event categories
- Results showed promise but not concrete evidence for trading

Feature	B1	B2	Uni	NMF	E
Earnings surprise			√	$ $ \checkmark	
Recent movements		V	V	V	V
Volatility index		V	V	,	V
Event category		V	V	i v	V
Unigrams		· · ·	V		V
NMF vector				\checkmark	V

Table 5: The list of features used in each model. B1: Baseline1, B2: Baseline2, Uni: Unigram model, NMF: NMF model, E: Ensemble model

System	Accuracy		
Random guess	33.3		
Majority class	34.9		
Baseline1	49.4		
Baseline2	50.1		
Unigram model	54.4		
NMF 50	54.7		
NMF 100	55.4		
NMF 200	55.3		
Ensemble	55.5		

Objective

• To predict the **weekly percentage change in stock price** using **quarterly fundamentals signals** and **daily textual signals** from news articles and 8k reports

Dataset & Signals

Dataset

- Dataset: Compustat
 - Stock price history
 - Fundamentals
 - Textual Analysis: Key Developments Dataset
- Universe: S&P1500 (2000 2020)
 - Currently only using (2000 2005)

Textual Analysis: Dataset

- **Dataset:** Capital IQ Key Developments
 - Text: Summaries of situations and events from news aggregators (e.g. financial articles), stock exchanges, regulatory websites (e.g. 8k reports), company websites (e.g. call transcripts)
 - **Events:** Categories of situation (e.g. bankruptcy, strategic alliances)
- Features:
 - Event type
 - Unigrams of words
 - Sentiment

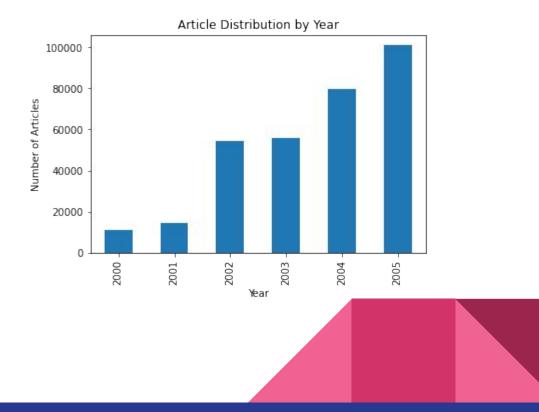
Textual Data

• Pre-processing pipeline

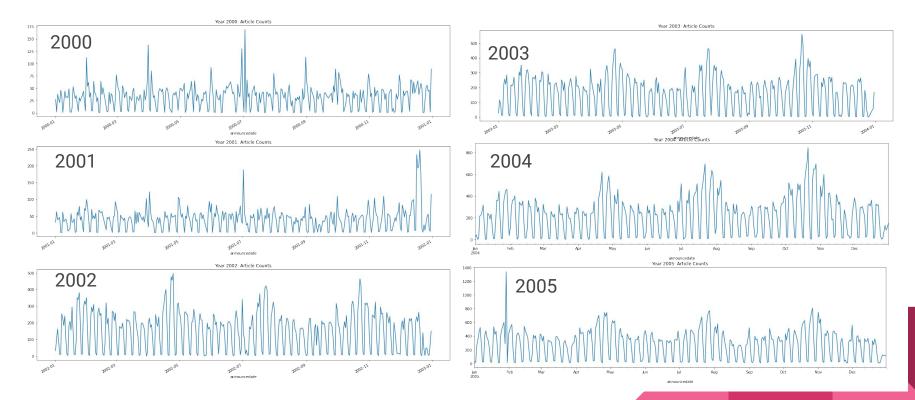
- Tokening
- Normalize text through removing stop words, numbers, names, punctuations etc
- Lemmatizing, and vectorizing
- Filter event categories using financial intuition
- $\circ \quad \mbox{Aggregating and match textual data} \rightarrow \mbox{weekly price time intervals}$

Textual Analysis: Article Frequency

- Time: 2000-2005
- Increasing frequency of articles over time
- Articles scrapped from online sources
- Correlates with increased online usage



Textual Analysis: Article Counts over Time



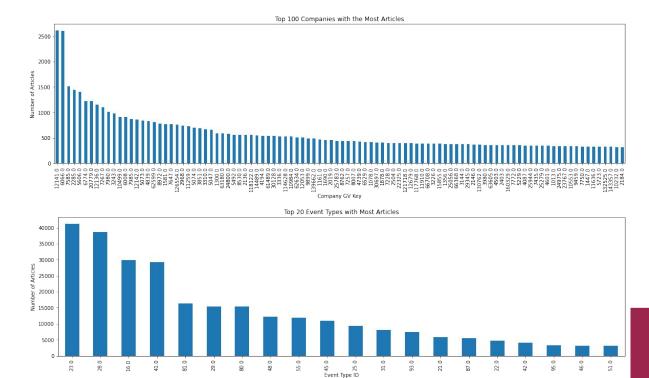
Textual Analysis: Time

- Cyclic monthly trends
- 4 cycles per month, where drops occur on the weekends

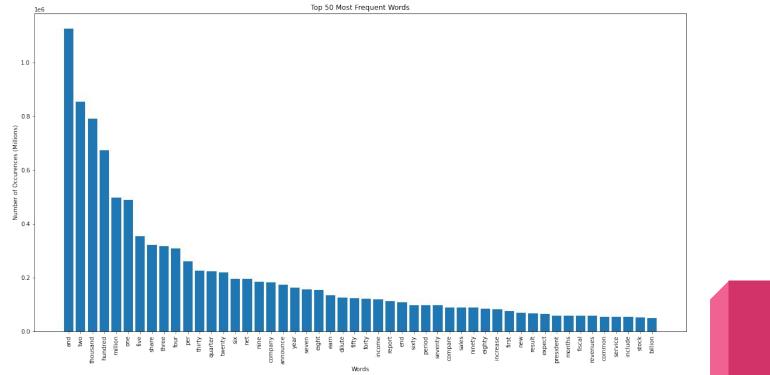


Textual Analysis: Event Types & Companies

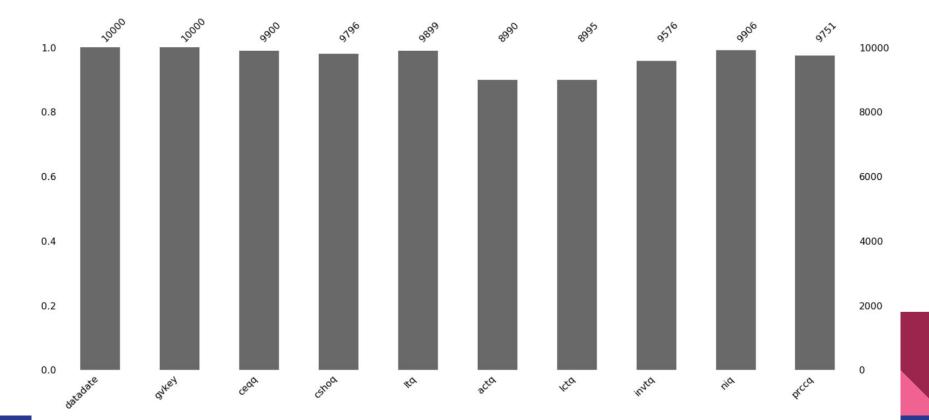
- Top Companies: Microsoft, IBM
- Top Event: Client Announcements, Announcement of Earnings



Textual Analysis: Unigram Frequency



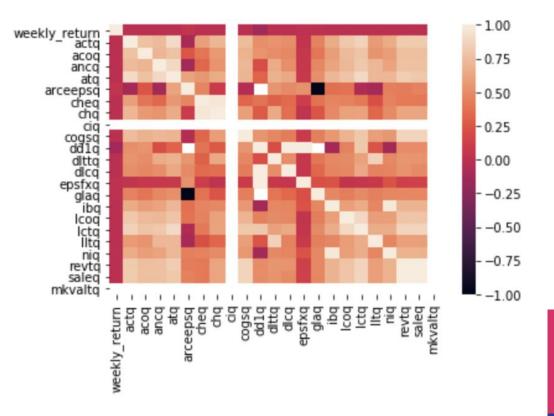
Fundamentals Data completeness



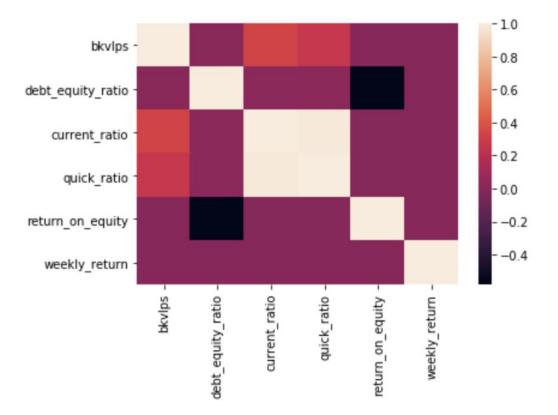
Fundamentals Data

- Only using S&P500, 2000 20005 data
- Pre-processing pipeline
 - Normalize stock prices, converting daily to weekly
 - $\circ \quad \mbox{Match quarterly fundamental features} \rightarrow \mbox{weekly price time intervals}$
 - Filter based on column sparsity
 - Filter promising fundamental features using financial intuition

Fundamentals Data

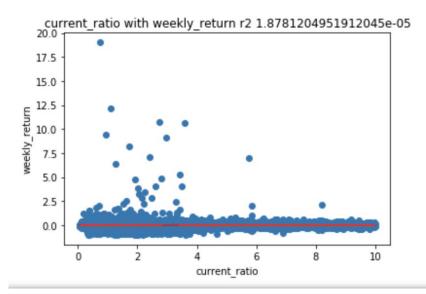


Fundamentals Data

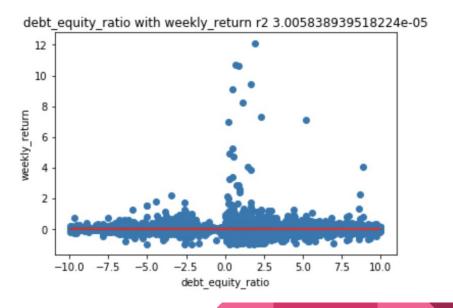


Baseline Results

current_ratio

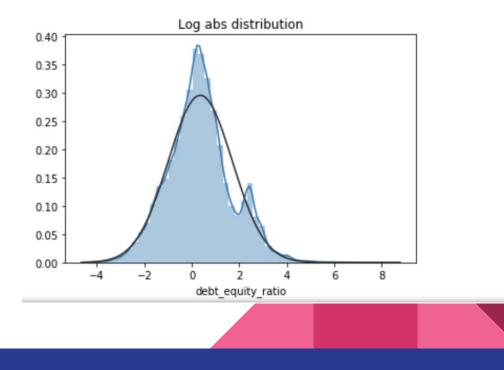


debt_equity_ratio



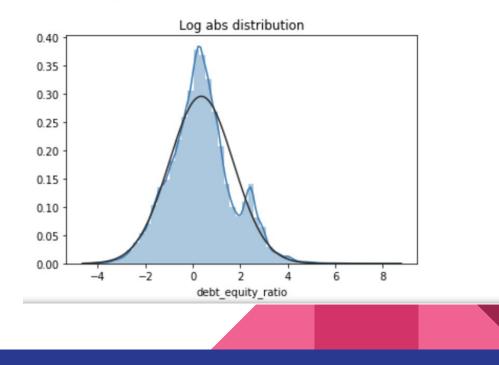
- Results mostly have low r^2 values.
- Analysis
 - Significant amount of data that was dropped during processing

debt_equity_ratio min -1513.25 max 4564.577319587629 % not dropped 0.30701782613959033



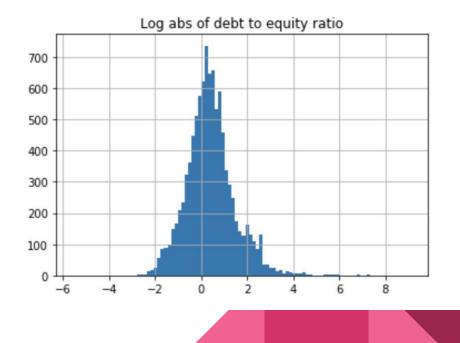
- Results mostly have low r^2 values.
- Analysis
 - Significant amount of data that was dropped during processing
 - Despite normalizing with ratios, the range of values is large.
 - Traced the issue with matching with time series data.

debt_equity_ratio min -1513.25 max 4564.577319587629 % not dropped 0.30701782613959033



- Results mostly have low r^2 values.
- Analysis
 - Significant amount of data that was dropped during processing
 - Despite normalizing with ratios, the range of values is large.
 - Traced the issue with matching with time series data.

-2817.681818181818 8938.884615384617



Next Steps

Next Steps: Fundamentals

- Build the data pipeline and find a good way to deal with missing data.
- Regress on some residual (ex. mistake) instead of % improvement
- Add macroeconomic variables since there is a "flight to quality" during high volatility regimes

Next Steps: Text

- Adding textual features from aggregated textual data across event categories to fundamentals numerical features for a complete model
- Textual features per event category plus fundamentals features model
- Examine SocialSent sentiment classifier to extract sentiment from text data
- Test and analyze experimental model results

Next Steps: Modeling

- Individually find signal between fundamental (quality) and text data.
 - We expect that simple regressions, random forest, bagging should be able to capture some signal (based on literature)
- Test the effectiveness of the regression on a rolling basis.

