Mean-Reverting / Statistical Arbitrage Strategy

Jonathan Tuck Raphael Abbou Vin Sachidananda

Stanford University

May 5, 2020

Co-integrated groupings

▶ Pairs trading: find a pair of assets S_t , F_t such that:

$$\frac{dS_t}{S_t} = \alpha dt + \beta \frac{dF(t)}{F(t)} + dX_t$$

where X_t is a mean reverting process.

• We want to generalize this strategy to m assets, *i.e.*, find a group of assets $(S^{(i)})_i$ and an allocation $w \in \mathbf{R}^m$ such that

$$\sum_{i} w_i \frac{dS_t^{(i)}}{S_t^{(i)}} = dX_t$$

Constraints

- Max assets with open positions, $\mathbf{card}(w) < n$
- Max allocation to individual asset, $\|w\|_{\infty} < k$

Strategy

Large positive (resp. negative) values in our mean reverting process dX_t mean that our basket of stocks is likely to drop and produce negative (resp. positive) returns, and we want to short (resp. long) it.

Strategy Roadmap

Buy when below mean, sell when above mean

- Measure with *z*-score $z = \frac{s_t \mu}{\sigma}$,
 - s_t is linear combination of assets
 - μ , σ rolling window samples
 - Window size decided by out-of-sample validation
- \blacktriangleright Bounds on opening long/short, exiting long/short: $S_{\rm o,l}, S_{\rm o,s}, S_{\rm e,l}, S_{\rm e,s}$
 - Hyper-parameters
 - Not necessarily symmetric about z = 0

Bet sizing

Diverse set of strategies, market-neutral

Problem

Naive method badly overfits (perfect in train, completely unusable in test)

Data

Universe of assets:

- S&P 500
- 50 largest cap companies in the US
- Indices / ETFs

Exploring tick sizes of 15 minutes, 1 hour, 1 day:

- Hypothesis: higher frequency \implies more opportunities to enter/exit
- Sub-selection of stocks to be made in order to reduce overfitting
- Hyper-parameter to be tuned

Stock groupings

- Groups, not necessarily pairs
- Look at sectors, unsupervised learning methods
- Sparse optimization methods
 - Rounding/Polishing of Regularized (ℓ_1, ℓ_2) solutions
 - Mixed Integer Formulations
- ► Goal: produce *multiple* methods of finding these groups
 - Hopefully uncorrelated

Criteria

Drawdown

- Sharpe Ratio
- Overall return
- Rolling portfolio beta

Validation

In order to avoid over-fitting problems, and as we want to take into account the non-stationarity of our data, we develop the following validation scheme to test our model:

Timeline

- Functional pipeline for testing strategies
- Pre-selection of co-integrated pairs
- Solidify strategies
- Hyper-parameter selection