Statistical Arbitrage

MS&E 448 Midterm Presentation

Shane Barratt Russell Clarida Mert Esencan Francesco Insulla Cole Kiersznowski Andrew Perry¹

Stanford University

May 5, 2020

¹Authors listed in alphabetical order

Shane Barratt, Russell Clarida, Mert Esencan,

Statistical Arbitrage

May 5, 2020 1/18

Shane Barratt, Russell Clarida, Mert Esencan,

< □ > < □ > < □ > < □ > < □ >

Background

- Statistical arbitrage = short-term trading strategy that bets on mean-reversion of asset baskets (more later)
- The intuition of statistical arbitrage is based on the idea that the difference between what an equities' price is and what it should be is driven by idiosyncratic shocks
- Statistical arbitrage requires 3 steps:
 - Finding asset baskets
 - Prediction based on mean-reversion
 - Ortfolio construction

Market–Neutral Investments

- *n* assets, with prices $p_t \in \mathbb{R}^n_+$ at time period $t = 1, \dots, T$
- Assume assets are hedged w.r.t. market, *i.e.*, each asset is actually 1 unit of the asset and $-\beta$ units of the market, where β is the correlation of the market returns with the asset returns
- Observation: Investing (long or short) in any of these assets is market-neutral

Finding Pairs

- For each pair of assets, consider the asset basket where we invest in 1 unit of asset i and θ units of asset j
- Choose θ as solution to the problem

minimize
$$\sum_{i=1}^{T} ((p_t - \mathsf{E}[p_t])_i + \theta(p_t - \mathsf{E}[p_t])_i)^2,$$

with variable $\theta \in \mathbb{R}$.

• Results in n(n-1)/2 baskets (for S&P 1500, ≈ 1.1 million baskets).

< □ > < 同 > < 回 > < 回 > < 回 >

Example: Finding Pairs

- Consider INTC hedged (1 INTC, -1.006 SPY) and IBM hedged (1 IBM, -1.014 SPY), in 2015
- Solving problem on previous slide gives θ = 0.846, so final asset basket is (1 INTC, 0.846 IBM, -1.864 SPY)

What Happened in 2016?

Shane Barratt, Russell Clarida, Mert Esencan

▶ ▲ ≣ ▶ ≣ ∽ ९ ୯ May 5, 2020 7/18

Ornstein–Uhlenbeck Process

- We model the residual returns as a mean-reverting processes the Ornstein–Uhlenbeck (OU) process [1]
- The OU process is given by

$$dX_t = \rho(\mu - X_t)dt + \sigma dB_t, \quad \rho, \sigma > 0 \tag{1}$$

where ρ is the speed of mean reversion, μ is the long run average, σ is the instantaneous volatility, and B_t is a standard Brownian motion

• We allow for the assumption that over a short trading period that $\rho,$ $\mu,$ and σ stay constant

< □ > < □ > < □ > < □ > < □ > < □ >

AR(1) Process

- To determine the constants ρ , μ , and σ in the OU process we use an auto-regressive process with a lag of one (AR(1) process)
- An AR(1) process is given by

$$X_{t+1} = \lambda + \phi X_t + \epsilon_t \tag{2}$$

• The interpretation of λ , ϕ , and ϵ as it relates to the OU process is

$$\lambda = \mu(1 - e^{-\rho\delta t})$$

$$\phi = e^{-\rho\delta t}$$

$$\epsilon_t \sim \mathcal{N}\left(0, \frac{\sigma^2}{2\rho}(1 - e^{-2\rho\delta t})\right)$$
(3)

 We fit an AR(1) to all 1 million baskets and select the ones we are most confident about by using a Dickey - Fuller test

< □ > < □ > < □ > < □ > < □ > < □ >

Trading Signal

- Now that we are able to model stocks as an OU process we need a dimensionless trading signal
- We will use the distance that X_t is from the mean μ by the long run standard deviation $\overline{\sigma} = \frac{\sigma}{\sqrt{2\rho}}$. Giving us the signal

$$s_t = \frac{X_t - \mu}{\overline{\sigma}} \tag{4}$$

< □ > < □ > < □ > < □ > < □ > < □ >

• We use the signal as follows: given an $s_t \gg 0$ we short S and buy F, when $s_t > 0$ we exit that position. Conversely, when $s_t \ll 0$ we long S and short F, when $s_t < 0$ we exit that position.

Trading Signal

Figure: Trading Signal for previous example.

Shane Barratt, Russell Clarida, Mert Esencan

Statistical Arbitrage

May 5, 2020 11 / 18

• The data we are using comes from CRSP (Center for Research in Security Prices) accessed through WRDS (Wharton Research Data Services)

Data

- Universe: We decided to use equities that are present in the S&P 1500 every year from 2003 to 2019
- Timescale: Currently we are using daily data to create our statistical arbitrage models, but we will hopefully extend our model to use 30 minute price intervals

Preliminary Implementation

We constructed a data pipeline that does the following given a selection of stocks:

- Constructs the optimal basket
- Tests the stationarity of the residuals using the Augmented Dickey-Fuller (ADF) test

(b) Stationary residuals

Shane Barratt, Russell Clarida, Mert Esencan

Statistical Arbitrage

May 5, 2020 13 / 18

Next Steps

- Determine best thresholds for the trading signal
- Extending our model to work with higher frequency data rather than daily data
- Develop various approaches to construct baskets
 - We already have a Greedy Bottom-Up ADF-based implementation
- Produce more residual returns and develop a robust back testing method

(4) (日本)

Questions

Shane Barratt, Russell Clarida, Mert Esencan,

Statistical Arbitrage

May 5, 2020 15 / 18

2

A D N A B N A B N A B N

Thank You

Shane Barratt, Russell Clarida, Mert Esencan

Statistical Arbitrage

May 5, 2020 16 / 18

2

< □ > < □ > < □ > < □ > < □ >

References

- Steven Finch. Ornstein-Uhlenbeck Process by Steven R. Finch. pages 1–14, 2004.
- Marco Avellaneda et al. Statistical Arbitrage in the U.S. Equities Market, 2009

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Appendix A: Portfolio Construction

- \bullet Let Σ be the estimated covariance of our predictions
- Basic: Long k baskets with highest μ_i/Σ_{ii}, short k baskets with most negative μ_i/Σ_{ii}
- Sophisticated: Convex Markowitz portfolio optimization

maximize
$$\mu^{\top} x - \frac{\gamma}{2} x^{\top} \Sigma x$$

subject to $\mathbf{1}^{\top} x = 1$

where $x \in \mathbb{R}^m$ and risk-aversion $\gamma \in \mathbb{R}_+$.

• All portfolios are (by definition) market neutral

< □ > < □ > < □ > < □ > < □ > < □ >