Statistical Arbitrage

MS\&E 448 Midterm Presentation

Shane Barratt Russell Clarida Mert Esencan Francesco Insulla Cole Kiersznowski Andrew Perry ${ }^{1}$

Stanford University

May 5, 2020

[^0]
Overview

(1) Background
(2) Data
(3) Preliminary Implementation

(4) Next Steps

Background

- Statistical arbitrage $=$ short-term trading strategy that bets on mean-reversion of asset baskets (more later)
- The intuition of statistical arbitrage is based on the idea that the difference between what an equities' price is and what it should be is driven by idiosyncratic shocks
- Statistical arbitrage requires 3 steps:
(1) Finding asset baskets
(2) Prediction based on mean-reversion
(3) Portfolio construction

Market-Neutral Investments

- n assets, with prices $p_{t} \in \mathbb{R}_{+}^{n}$ at time period $t=1, \ldots, T$
- Assume assets are hedged w.r.t. market, i.e., each asset is actually 1 unit of the asset and $-\beta$ units of the market, where β is the correlation of the market returns with the asset returns
- Observation: Investing (long or short) in any of these assets is market-neutral

Finding Pairs

- For each pair of assets, consider the asset basket where we invest in 1 unit of asset i and θ units of asset j
- Choose θ as solution to the problem

$$
\operatorname{minimize} \sum_{i=1}^{T}\left(\left(p_{t}-\mathbf{E}\left[p_{t}\right]\right)_{i}+\theta\left(p_{t}-\mathbf{E}\left[p_{t}\right]\right)_{j}\right)^{2}
$$

with variable $\theta \in \mathbb{R}$.

- Results in $n(n-1) / 2$ baskets (for S\&P 1500, ≈ 1.1 million baskets).

Example: Finding Pairs

- Consider INTC hedged (1 INTC, -1.006 SPY) and IBM hedged (1 IBM, -1.014 SPY), in 2015
- Solving problem on previous slide gives $\theta=0.846$, so final asset basket is (1 INTC, 0.846 IBM, -1.864 SPY)

What Happened in 2016?

Ornstein-Uhlenbeck Process

- We model the residual returns as a mean-reverting processes the Ornstein-Uhlenbeck (OU) process [1]
- The OU process is given by

$$
\begin{equation*}
d X_{t}=\rho\left(\mu-X_{t}\right) d t+\sigma d B_{t}, \quad \rho, \sigma>0 \tag{1}
\end{equation*}
$$

where ρ is the speed of mean reversion, μ is the long run average, σ is the instantaneous volatility, and B_{t} is a standard Brownian motion

- We allow for the assumption that over a short trading period that ρ, μ, and σ stay constant

AR (1) Process

- To determine the constants ρ, μ, and σ in the OU process we use an auto-regressive process with a lag of one (AR(1) process)
- An $\operatorname{AR}(1)$ process is given by

$$
\begin{equation*}
X_{t+1}=\lambda+\phi X_{t}+\epsilon_{t} \tag{2}
\end{equation*}
$$

- The interpretation of λ, ϕ, and ϵ as it relates to the OU process is

$$
\begin{align*}
\lambda & =\mu\left(1-e^{-\rho \delta t}\right) \\
\phi & =e^{-\rho \delta t} \tag{3}\\
\epsilon_{t} & \sim \mathcal{N}\left(0, \frac{\sigma^{2}}{2 \rho}\left(1-e^{-2 \rho \delta t}\right)\right.
\end{align*}
$$

- We fit an $\operatorname{AR}(1)$ to all 1 million baskets and select the ones we are most confident about by using a Dickey - Fuller test

Trading Signal

- Now that we are able to model stocks as an OU process we need a dimensionless trading signal
- We will use the distance that X_{t} is from the mean μ by the long - run standard deviation $\bar{\sigma}=\frac{\sigma}{\sqrt{2 \rho}}$. Giving us the signal

$$
\begin{equation*}
s_{t}=\frac{X_{t}-\mu}{\bar{\sigma}} \tag{4}
\end{equation*}
$$

- We use the signal as follows: given an $s_{t} \gg 0$ we short S and buy F, when $s_{t}>0$ we exit that position. Conversely, when $s_{t} \ll 0$ we long S and short F, when $s_{t}<0$ we exit that position.

Trading Signal

Figure: Trading Signal for previous example.

Data

- The data we are using comes from CRSP (Center for Research in Security Prices) accessed through WRDS (Wharton Research Data Services)
- Universe: We decided to use equities that are present in the S\&P 1500 every year from 2003 to 2019
- Timescale: Currently we are using daily data to create our statistical arbitrage models, but we will hopefully extend our model to use 30 minute price intervals

Preliminary Implementation

We constructed a data pipeline that does the following given a selection of stocks:

- Constructs the optimal basket
- Tests the stationarity of the residuals using the Augmented Dickey-Fuller (ADF) test

(a) Log Price

(b) Stationary residuals

Next Steps

- Determine best thresholds for the trading signal
- Extending our model to work with higher frequency data rather than daily data
- Develop various approaches to construct baskets
- We already have a Greedy Bottom-Up ADF-based implementation
- Produce more residual returns and develop a robust back testing method

Questions

Thank You

References

(1) Steven Finch. Ornstein-Uhlenbeck Process by Steven R. Finch. pages 1-14, 2004.
(2) Marco Avellaneda et al. Statistical Arbitrage in the U.S. Equities Market, 2009

Appendix A: Portfolio Construction

- Let Σ be the estimated covariance of our predictions
- Basic: Long k baskets with highest $\mu_{i} / \Sigma_{i i}$, short k baskets with most negative $\mu_{i} / \Sigma_{i i}$
- Sophisticated: Convex Markowitz portfolio optimization

$$
\begin{array}{ll}
\operatorname{maximize} & \mu^{\top} x-\frac{\gamma}{2} x^{\top} \Sigma x \\
\text { subject to } & \mathbf{1}^{\top} x=1
\end{array}
$$

where $x \in \mathbb{R}^{m}$ and risk-aversion $\gamma \in \mathbb{R}_{+}$.

- All portfolios are (by definition) market neutral

[^0]: ${ }^{1}$ Authors listed in alphabetical order

