
MS&E 448 Final Project: Statistical arbitrage

Jonathan Tuck Raphael Abbou Vin Sachidananda

June 10, 2020

1 Introduction

Statistical arbitrage comprises a group of trading strategies which seek to identify, through
quantitative means, mispriced assets by analyzing relative price movements. As an example,
consider a universe with two equities at time t, At and Bt, issued by public companies which
each control 50% of electricity sales in the United States. Assuming that the two companies
are similarly structured with regard to fundamentals, the two equities should tend to move in
tandem; that is to say, the stochastic process At−Bt should have mean reverting properties
with µ = 0. Informally, statistical arbitrage takes advantage of when the two equities’ prices
move out of tandem, i.e.At − Bt > ε, ε > 0, with the expectation that At+δ − Bt+δ = 0 at
some later date t + δ. To develop a trading strategy using this information, a trader may
go short in equity A and long in B at time t and exit both positions at time t+ δ netting a
profit of ε. This simplified case is commonly referred to as pairs trading ; statistical arbitrage
generalizes the notion of pairs trading and has been applied on groups of equities, ETFs,
currencies and derivatives.
In this paper, we propose two statistical arbitrage strategies which use sparse optimization
and lagged correlation, respectively, to find groups of stocks whose relative price movements
are mean reverting. Additionally, we propose methods for devising trading policies on these
groups of stocks.
In particular, the contributions of our project are:

• Modeling and testing of statistical arbitrage strategies using sparse optimization for-
mulations for identifying co-integration asset buckets, and

• Modeling and testing of statistical arbitrage strategies using lagged correlation metrics.

2 Background

2.1 Statistical arbitrage

In this section, we provide the intuition and mathematical properties associated with statis-
tical arbitrage trading strategies.

1

2.1.1 Intuition

In developing a statistical arbitrage trading strategy, two challenges must be solved (i) first,
one must identify groups of equities whose relative price differences are mean reverting and
(ii) second, entry and exit points for trades must be identified in a manner that maximizes
risk adjusted returns. Various statistical approaches have been used utilized to solve the first
task including principal components analysis (PCA), autoregressive models, co-integration,
volatility modeling, and time series analysis. The second task is typically solved by defining
trading policies based on portfolio optimization and covariance estimation. In this paper,
we devise two trading statistical arbitrage strategies. To solve the first step, these strategies
respectively use sparse optimization and lagged correlation metrics to find groups of equities
whose relative price movements are mean reverting. The second task is then solved with a
policy which enters and exits trades using z-scores on the difference process of the groups
derived in the first step.

2.1.2 Definition

First, one would like to identify groups of assets whose relative price movements are mean
reverting. Let E , |E| = K be the universe of assets under consideration and yit, t ∈ T , i ∈ E
be the price of an asset i at time t. At time t, one is concerned with finding subsets of E ,
L, S (E , such that for fixed finite δ:∑

i∈L

yit −
∑
i∈S

yit > µ+ ε, Eyit+δ [
∑
i∈L

yit+δ −
∑
i∈S

yit+δ] = µ, ε ∈ R

The second step, which is common across many families of trading strategies, seeks to maxi-
mize returns subject to risk using a trading policy Π on L, S. Here we provide a policy which
seeks to maximizes the Sharpe ratio, a commonly used metric for risk adjusted returns.

Assume R = γ is the risk free return (U.S. Treasury bonds). A policy Π is able to en-
ter a position, do nothing, or short a position at time t ∈ {0, 1, ...δ} which correspond to
the decisions in {1, 0,−1} respectively. Notationally, consider a policy with δ timesteps,
Π ∈ {1, 0,−1}δ, where the decision made at timestep t ∈ {0, 1, ...δ} is denoted as Πt.

Π∗ = argmax
Πt∈{1,0,−1}δ

E[(Πtα)− γ]

σ(Πtα)

For a process,
∑

i∈L y
i
t −

∑
i∈S y

i
t, which has been identified as having mean reverting prop-

erties, one can quantify the expected risk adjusted return for a decision made at time t, Πt,
carried out through the entire horizon, t + δ. At time t, let

∑
i∈L y

i
t −

∑
i∈S y

i
t = µ + ε and

let σ be the standard deviation of the returns.

2

Πt = max
Πt∈{1,0,−1}

Πt
ε− γ

σ
√
δ − t

,

Intuitively, one would like to enter and exit positions as |ε− γ| becomes large relative to σ.

2.2 Co-integration

In this section, we briefly define and discuss co-integration, which is a condition that is
typically desired of a collection of time series signals used in statistical arbitrage.

Order of integration. A time series signal xt is said to be integrated of order d if diffd(xt),
the signal obtained by applying the difference operator to xt d times, is stationary. (In this
paper, we only consider the case of d = 1, as the difference in stock prices is typically taken
as stationary.)

We call a collection of m time series signals, (yt)1, . . . , (yt)m, that are each integrated of order
d, co-integrated if the time series

∑m
i=1wi(yt)i is integrated of order less than d. As a simple

example, consider two time series At and Bt. Then, we call At and Bt co-integrated if it
holds that At + κBt is stationary for some κ ∈ R. Informally, if a collection of time series
signals are co-integrated, then their statistical properties tend to stay constant over time.
(In practice, it is quite hard for this to be true exactly; as such, we are generally concerned
with whether this holds approximately, rather than exactly.)

Testing for co-integration. There are many statistical tests available to test if two time
series signals are co-integrated. Among the most common are the Engel-Granger test [EG87],
the Johansen test [Joh91], and the Phillips–Ouliaris test [PO90]. In practice, for baskets of
time series, one time series is compared to the linear combination of the other time series. For
a concrete example of using one of these tests, see §5.1 for an instance of the Engel-Granger
test.

2.3 Lead-lag models

In this section, we will describe another approach that leads to the creation a basket of
co-integrated stocks. We believe that the co-integration for a pair of stocks is related to a
lead-lag correlation effect: let’s assume that we have two stocks, whose prices are denoted
Pt and Qt, and that the returns of P at time t are correlated with the lagged returns of Q
at time d + dt. A first strategy would be to go long (respectively, short) Q whenever the
returns of P are positive (respectively, negative). However, we manage to extend this idea to
link it with the idea or pair-trading and come up with what we expect to be a more robust
strategy. Assuming that both P and Q have no alpha, if the return of P at a given time is
excessively large, we want to go long Q (as its lagged return is expected to follow the same

3

2015-012015-072016-012016-072017-012017-072018-012018-072019-01
Date

35

30

25

20

15

10

5

0

w
T y

t

train
test

Figure 1: An example of the basic problem (1) overfitting.

behavior), but also short P , as we expect that price to revert back with respect to Q. We
thus get a strategy for a pair that exhibits lead-lag correlation that is similar to pair-trading.

3 Sparse statistical arbitrage

Basic problem. The basic statistical arbitrage problem can be cast as a constrained
quadratic program

minimize
∑T

t=1(wTyt − µ)2

subject to w ∈ C (1)

where w ∈ Rm and µ ∈ R are the optimization variables, and C encodes other constraints.
For convex C, the problem (1) is a convex optimization problem and can be solved efficiently
[BV04].

An issue with this basic problem is that this approach, by itself, tends to significantly
overfit in practice. That is, in training, wTyt tends to produce a time series that is perfectly
stationary; in test, however, it is very rare that the same statistical properties hold. We
illustrate this in figure 1, with m = 500 stocks.

Sparse problem. To the basic problem (1) we add regularization to reduce overfitting.
The new problem is to be solved is then

minimize
∑T

t=1(wTyt − µ)2 + λ‖w‖1

subject to w ∈ C, (2)

4

Figure 2: Lagged Correlation Matrix.

where w ∈ Rm and µ ∈ R are the optimization variables, and C encodes other constraints,
like in (1). Additionally, λ > 0 is a hyper-parameter on the `1 norm of w, encouraging the
minimizer to be sparse, resulting in a portfolio of a small number of assets.

Polishing. In practice, once we find w?, the minimizer of (2), it is useful to then solve the
problem (1), with the additional constraint that wi = 0 for all i ∈ I, where I is the index
set of all indices i for which w?i = 0.

4 Lagged correlation

The ideas that we present in this section are inspired by a paper that proposes ways to
establish lead-lag relationships between stocks [CCK15]. In this approach, we have used
data from Maystreet.

Lead-Lag correlations Computation. We say that two stocks P and Q have a lead-lag
correlation when dPt

Pt
and dQt+dt

Qt+dt
are significantly correlated. In order to compute the lagged

correlation for a given training period, we compute the matrix of returns A of our stocks,
and B the matrix of lagged returns, and Σ = AB will be our matrix of lagged returns. We
first study on the 50 largest CAP US companies our lagged returns for data sampled every
15 minutes (Figures 1), and try to get cluster of lagged-correlated stocks, as this will be
interesting when we will establish baskets of stocks (Figure 3), as described below. We get
promising results that show that there is room for us to get baskets of lagged-correlated
stocks.

5

Figure 3: Lagged Correlation Clusters.

Strategy description. In order to generate our baskets of co-integrated stocks, we will
establish Lagged Correlation graph: for all pairs of stocks that are lagged-correlated, we draw
an edge between these two nodes. We then define a basket of stock as a connected component
of the graph: all the stocks in this connected component will be indirectly lagged-correlated.
Then for each basket, we regress the returns of the most connected node against the returns
of the other stocks, as we assume that this node will provide the largest number of non-zero
coefficients. We add a L2 penalty (Ridge regression) in order to avoid flipping of coefficients
while we regress on different train sets, as we are working by design with correlated stocks.

The difference between the lead stocks and the laggers weighted by the regression coeffi-
cients is assumed to be mean-reverting. Each time our basket go above (respectively, under)
one standard deviation of its mean (both being computed on the training set), we go short
(respectively, long) of the basket. We rebalance our betas every months, and backtest our
PnL on the next (out-of-sample) month.

Establishing Lead-Lag correlations. When we say that two stocks are lagged-correlated,
we want to be confident about that fact. What we do is we use a bootstrap technique, where
for each bootstrap b, we shuffle the rows of the lagged matrix of returns B, and then we
compute a new lagged-correlation matrix Σb. We thus get a distribution of randomized
lagged correlation for each pair of stocks, and we consider that two stocks are positively
(respectively, negatively) lagged-correlated if their original lagged correlation is in the top
(respectively, bottom) 5% of this distribution (5% corresponds to the p-value that we selected
for our test). As we are doing multiple tests (one for each pair of stock, which is N2 = 2500
tests, where N = 50 is the number of stocks in our universe), we add a Bonferroni correction
to each of our test (i.e., we divide our p-value by N2).

6

Figure 4: Cross-validation procedure used.

5 Experiments

Validation. In order to retain the temporal structure of the time series data, it is critical to
not shuffle the data randomly while validating a model. We therefore employ the procedure
illustrated in figure 4. For some number of folds (taken to be five in the experiments), we
select a date, train on all data before that date, and test on data after that date.

5.1 Sparse optimization

For this example, we consider m = 28 stocks classified in the “Energy” sector of the S&P 500.
We train and validate from January 1, 2014 to January 1, 2016, and test from January 2,
2016 to January 1, 2017.

Baskets. In practice, one would collect many baskets of stocks and perform the procedure
outlined in this section; empirically, we found many portfolios using this procedure, which
enjoyed similar performance. To simplify our analysis, we look at only one of those baskets.

Constraints. We add a constraint on market neutrality. Each of the assets each have a
market beta, collected in β ∈ Rm, which is taken as problem data. Then, we can add a
market neutrality constraint as

|wTβ| ≤ ε.

This forces the market portfolio to be insensitive to the market by a factor of 1/ε. (The
market, by definition, has a market beta of one.) Therefore, we have

C = {w ∈ Rm | −ε ≤ wTβ ≤ ε}.

7

Figure 5: Overall portfolio of example in §5.1.

Results. We use market neutrality bound ε = 0.1 and `1-regularization hyper-parameter
λ = 1.2; λ was chosen using a crude hyper-parameter search over the validation set. The
overall portfolio is given in figure 5. The overall portfolio includes 18 unique stocks.

Figure 6 plots the overall portfolio over the training and test set dates. The portfolio remains
stable over the course of the entire training and test set, and the portfolio beta is both close
to zero over the entire time frame.

Policy. We use this portfolio in a simple trading policy. At any given time, we are allowed
to be long 1 share, short 1 share, or have no shares in the overall portfolio. We short/long
1 share when µ + σ ≤ wTyt ≤ µ + 2σ / µ − σ ≥ wTyt ≥ µ − 2σ, respectively. Here, µ and
σ are now the rolling, 30-day, backward means and standard deviations, respectively, which
can be seen in figure 11. We run the policy for the entirety of the test set dates. We find
that the policy yields a 16% return over the course of the test, with a maximum drawdown
of approximately 8%.

Testing for co-integration. As a further example, we run an Engel-Granger test on the
portfolio to test for co-integration, the results of which are seen in figure 8. On the training
set, the t-statistic of the test is -6.30, with an approximate p-value of 3.42×10−7. On the test
set, the t-statistic of the test is -3.84, with an approximate p-value of 1.18×10−2, suggesting
that the portfolio is co-integrated with SPY over both the training and test sets.

8

2014-012014-052014-092015-012015-052015-092016-012016-052016-092017-01

15

10

5

0

5
train: -4.401±2.822 : -0.056
test:-3.074±3.852 : -0.068

Figure 6: Overall portfolio over the training and test set dates, for the example in §5.1.

2014-01 2014-05 2014-09 2015-01 2015-05 2015-09 2016-01 2016-05 2016-09 2017-01

15

10

5

0

5

train
test

± 2
±

Figure 7: Sparse portfolio over the training and test sets, with bounds corresponding to µ ± σ
and µ± 2σ.

9

2014-012014-04 2014-07 2014-10 2015-012015-04 2015-07 2015-10 2016-01

160

170

180

190

200

TRAIN
coint_t=-6.3076 pvalue=3.423e-07

2016-01 2016-03 2016-05 2016-07 2016-09 2016-11 2017-01

170

180

190

200

210

220

TEST
coint_t=-3.8439 pvalue=0.0118

SPY
Cointegrated group

Figure 8: Results of Engel-Granger test for example in §5.1.

5.2 Lagged correlation

We manage to find (Figure 9) the presence of statistically significant lagged-correlation re-
lationships in our universe of stocks. Interestingly, we can notice that these links drastically
vanish when we increase the data frequency to daily data. We would interpret that phe-
nomenon by saying that because of transaction costs, the market exhibits inefficiencies at
smaller time-scales, as shot-term lead-lag arbitrage would probably result in high trading
costs, hence the existence of these lagged correlation at that time scale.

In our final strategy, we use 15 minute data. We cross-validate our strategy with a rolling
window of one month. We notice that our baskets of stocks are stable and stationary: we
define a coefficient that we call ’retention’, which is the ratio of stocks in a basket that
stays from one month to the other, and get values between 70− 75% in 2016-2017. Finally,
without taking into account trading costs, we get very exciting out-of-sample results: over
30% cumulative returns for 2016-2017 and over 70% for 2017-2018 (Figure 10 and 11)! As we
are trading often (multiples times a day), we believe that trading costs and bid-ask spreads
would have a very important impact on the real PnL of the strategy, but these results look
very promising.

6 Conclusion

Through this project, we have proposed and analyzed two statistical arbitrage strategies
which make use of sparse optimization and lagged correlation. Interestingly, we find that
our sparse optimization approach is able to find cointegrated baskets of stocks. We test
our strategies and find that both are able to return in excess of 10% for each trading year
simulated.

10

[1 minute] [15 minutes]

[1 day]

Figure 9: Impact of Data Frequency on Lagged-Correlation

Figure 10: Cumulative Returns in percents for the 2017-2018 period.

11

Figure 11: Cumulative Returns in percents for the 2016-2017 period.

Acknowledgements

The authors would like to thank Lisa Borland and Enguerrand Horel for their useful sugges-
tions during the project.

References

[BV04] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press,
2004.

[CCK15] R. N. Mantegna H. E. Stanley C. Curme, M. Tumminello and D. Kenett. Emer-
gence of statistically validated financial intradaylead-lag relationships. Quantitative
Finance, 55(8):375—-1386, 2015.

[EG87] R. F. Engle and C. W. J. Granger. Co-integration and error correction: Represen-
tation, estimation, and testing. Econometrica, 55(2):251–276, 1987.

[Joh91] S. Johansen. Estimation and hypothesis testing of cointegration vectors in gaussian
vector autoregressive models. Econometrica, 59(6):1551–1580, 1991.

[PO90] P. C. B. Phillips and S. Ouliaris. Asymptotic properties of residual based tests for
cointegration. Econometrica, 58(1):165–193, 1990.

Appendix

6.1 Data Processing Scripts

In this section, we provide the code used to query stock quotes used in our experimentation.

12

6.1.1 CRSP Daily Quotes

In this subsection, we provide code used to query daily stock quotes from the Center of
Research in Securities Prices (CRSP) using the Wharton Research Data Services (WRDS)
Python API.

import wrds

import pandas as pd

import datetime

from dateutil.relativedelta import relativedelta

import cPickle

Connect to WRDS

db = wrds.Connection()

###

SQL Query - Get largest N market cap stocks at start of each month

###

Initialize dictionary to store top N gvkeys for every month and specify

timeframe of interest

N = 1500

gvkey_month, tickers_month, cusip_month = {}, {}, {}

start_date, end_date = ’2018-01-01’, ’2018-03-01’

curr_date = datetime.datetime.strptime(start_date,’%Y-%m-%d’)

last_date = datetime.datetime.strptime(end_date,’%Y-%m-%d’)

Reference df for primary security

q10 = ("select gvkey,primiss from compm.secm")

primiss_df = db.raw_sql(q10)

while curr_date < last_date:

curr_date_string = curr_date.strftime(’%Y-%m-%d’)

print(curr_date.date())

Query to get list of N companies with top market cap for the given month

q1a = ("select distinct

a.gvkey,a.latest,b.cshoq,b.prccq,b.mkvaltq,b.cshoq*b.prccq as

market_cap,b.curcdq "

"from "

"(select gvkey,max(datadate) as latest "

"from "

"compm.fundq where datadate < ’%s’ "

"group by gvkey) a inner join "

"(select gvkey,datadate,mkvaltq,cshoq,prccq,curcdq "

"from compm.fundq where cshoq>0 and prccq>0 and curcdq=’USD’

13

and mkvaltq>0) b "

"on a.gvkey = b.gvkey and a.latest=b.datadate "

"order by market_cap desc "

"limit %i")%(curr_date_string, N)

merge the security flag

mrk_df = db.raw_sql(q1a)

mrk_df = mrk_df.merge(primiss_df,on=’gvkey’,how=’left’)

gvkey_list_month = mrk_df[’gvkey’][mrk_df[’primiss’]==’P’].values.tolist()

gvkey_month[curr_date.date()] = set(gvkey_list_month)

increment the date for next month

curr_date = curr_date + relativedelta(months=1)

Map from gvkey to ticker for each month

cusip_ticker_map = {}

for date in gvkey_month:

change format to be compatible with sql query

query_set = list(gvkey_month[date])

query_set = tuple(["’%s’"%str(i) for i in query_set])

query_set = ",".join(query_set)

Query to get fundamental Data

q2 = ("select datadate,gvkey,tic,cusip "

"from compm.fundq "

"where gvkey in (%s) and datadate > ’%s’ ")%(query_set, date)

fundq_df = db.raw_sql(q2)

tickers_month[date] = list(set(fundq_df.tic))

cusip_month[date] = list(set(fundq_df.cusip))

month_cusip_ticker = fundq_df.groupby(’cusip’)

month_cusip_ticker = dict(month_cusip_ticker[’tic’].unique())

for cusip in month_cusip_ticker:

if cusip not in cusip_ticker_map:

cusip_ticker_map[cusip] = list(month_cusip_ticker[cusip])

else:

cusip_ticker_map[cusip] += list(month_cusip_ticker[cusip])

cusip_ticker_map[cusip] = list(set(cusip_ticker_map[cusip]))

cusip_ticker_map = {k[:-1]: v[0] for k, v in cusip_ticker_map.items()}

Get timeframe and tickers to pull data for from input dictionary

start_date, end_date = None, None

cusip_to_query = []

14

for month in cusip_month:

if start_date is None:

start_date, end_date = month, month

elif month < start_date:

start_date = month

elif month > end_date:

end_date = month

else:

None

cusip_to_query += [ticker[:-1] for ticker in cusip_month[month]]

cusip_to_query = list(set(cusip_to_query))

cusip_to_query = tuple(["’%s’"%str(i) for i in cusip_to_query])

cusip_to_query = ",".join(cusip_to_query)

Query to get list of N companies with top market cap for the given month

q1 = ("select * from crsp.dsf where date between ’%s’ and ’%s’ and cusip in

(%s)")%(start_date, end_date, cusip_to_query)

price_df_all = db.raw_sql(q1).sort_values(’date’)

Add in ticker values

price_df_all[’tic’] = price_df_all[’cusip’].map(cusip_ticker_map)

get data from stock events table

q2 = ("select * from crsp.dse where date between ’%s’ and ’%s’ and cusip in

(%s)")%(start_date, end_date, cusip_to_query)

event_df_all = db.raw_sql(q2).sort_values(’date’)

merge events and price data

price_event_df_all = pd.merge(price_df_all, event_df_all, how=’outer’,

left_on=[’cusip’,’date’], right_on = [’cusip’,’date’])

6.1.2 TAQ Intraday Quotes

In this subsection, we provide code used to query daily stock quotes from NASDAQ Trade
and Quote (TAQ) using the Wharton Research Data Services (WRDS) Python API.

import wrds

import pandas as pd

import datetime

from dateutil.relativedelta import relativedelta

import cPickle

Connect to WRDS

db = wrds.Connection()

15

###

SQL Query - Given a list of equities and timeframe, get daily price data

####

###

outfile = ’price_data_intraday.csv’

cusip_ticker_map = {k[:-1]: v[0] for k, v in cusip_ticker_map.items()}

Get timeframe and tickers to pull data for from input dictionary

cusip_to_query = []

ticker_to_query = []

for month in cusip_month:

cusip_to_query += [cusip[:-1] for cusip in cusip_month[month]]

cusip_to_query = list(set(cusip_to_query))

cusip_to_query = tuple(["’%s’"%str(i) for i in cusip_to_query])

cusip_to_query = ",".join(cusip_to_query)

Query to get list of N companies with top market cap for the given month

q1 = ("select * from crsp.dsf where date between ’%s’ and ’%s’ and cusip in

(%s)")%(start_date, end_date, cusip_to_query)

price_df_all = db.raw_sql(q1).sort_values(’date’)

Add in ticker values

price_df_all[’tic’] = price_df_all[’cusip’].map(cusip_ticker_map)

get data from stock events table

q2 = ("select * from crsp.dse where date between ’%s’ and ’%s’ and cusip in

(%s)")%(start_date, end_date, cusip_to_query)

event_df_all = db.raw_sql(q2).sort_values(’date’)

merge events and price data

price_event_df_all = pd.merge(price_df_all, event_df_all, how=’outer’,

left_on=[’cusip’,’date’], right_on = [’cusip’,’date’])

Write to specified filename

price_event_df_all.to_csv(outfile, encoding=’utf-8’, index=False)

##

SQL Query - Given a list of equities and dates, get intraday price data

##

stock_day_map = price_event_df_all.groupby(’date’)[’tic’].apply(lambda x:

x.values.tolist()).to_dict()

import os.path

16

dates = sorted(stock_day_map.keys())

for date in dates:

tickers = tuple(set([stock for stock in stock_day_map[date] if type(stock) is

unicode]))

print(date, len(tickers))

day, month, year = str(date.day), str(date.month), str(date.year)

if len(day) == 1: day = "0" + day

if len(month) == 1: month = "0" + month

if not os.path.isfile("intraday_%s%s%s.csv"%(year,month,day)):

curr_table = "taqm_%s.nbbom_%s%s%s"%(year, year, month, day)

x = db.raw_sql("""

SELECT date_trunc(\’minute\’, time_m) as time, sym_root, (AVG(best_bid)

+ AVG(best_ask)) / 2 as price

FROM """ + curr_table + """ where sym_root in %(syms)s and

time_m between ’09:30:00.0’ and ’16:00:00.0’ group by sym_root, time

""", params={"syms": tickers})

x.to_csv("intraday_%s%s%s.csv"%(year,month,day), encoding=’utf-8’,

index=False)

17

