MS&E 448

Trading forex with a distributed quote book

Jingbo Yang, Xiaoye Yuan, Carolyn Kao, Jiachen Ge, Jon Braatz, Sunny Shah

With data provided by Integral Under guidance of Dr. Lisa Borland and Dr. Enguerrand Horel.

Overview

- Data from Integral
 - Preprocessing
- Latency arbitrage
- Machine learning based
 - Classification (up/down)
 - Regression (rate of return)
- Final report and beyond

Data from Integral

8 Currency pairs

USD/CAD, USD/CHF, USD/JPY, USD/SEK, AUD/USD, EUR/USD, GBP/USD, NZD/USD

Across 1 month, 5 liquidity providers (LPs)

- February 1st, 2019 March 1st, 2019
- Sunday: starting at 1800
- Monday-Thursday: 24 hours
- Friday: Ends at 2200
- 25 days, ~400 active hours

(discard, too few trades)

(discard after 1800)

provider	currency pair	time	bid price	bid volume	ask price	ask volume
LP-1	EURUSD	02.25.2019 00:00:00.819	1.13417	1000000	1.13424	1000000
LP-1	EURUSD	02.25.2019 00:00:00.819	1.13417	1000000	1.13423	1000000
LP-1	EURUSD	02.25.2019 00:00:00.819	1.13417	1000000	1.13423	1000000
LP-1	EURUSD	02.25.2019 00:00:00.841	1.13411	1000000	1.13423	1000000
LP-1	EURUSD	02.25.2019 00:00:00.841	1.13411	1000000	1.13423	1000000

Data Preprocessing

- We have 7 currency pairs and asynchronous quote updates
- Aggregate data over past 10, 30, 60, 300, and 600 seconds to get:
 - Open
 - Close
 - High
 - Low
 - Volume

Since Midterm Presentation

- Enabled a larger set of data
 - USD/CAD, USD/CHF, USD/JPY, EUR/USD, GBP/USD, NZD/USD
- Latency arbitrage
- More and better models
 - Linear regression using LightGBM, Kernel Ridge, Linear Regressor
 - Classification using LightGBM, KNN
 - Hyperparameter-tuning and error analysis

Latency Arbitrage

What is latency arbitrage?

Take advantage of price difference between quotes by liquidity providers (LP)

Trading window

Start: as soon as highest bid > lowest ask (negative spread)

End: LP change bid/ask so spread is no longer negative

Only interested in windows long enough for data to make round trip from NYC to Chicago

Capturing Fillable Orders

Network round trip time between Google servers

- NYC/Chicago:
- NYC/San Francisco:
- NYC/London:
- NYC/Hong Kong:

140MS

495MS

143MS

46ms

We picked **62.5ms** for minimum tradable window.

Observations

- Pairs have different activity patterns
- Lots of low spread and short window opportunities but large/long ones do exist

Trading Profits

Most profitable in NY afternoon and on Thursdays

EURUSD with most actionable profit

Potential Profit (0ms) (pips)	Actionable Profit (62.5ms+) (pips)		
85000.0	2152.5		
50100.0	1431.6		
73700.0	999.5		
92300.0	656.6		
10380000	61820.0		
44300.0	685.7		
38000.0	513.4		
	Potential Profit (0ms) (pips) 85000.0 50100.0 73700.0 92300.0 44300.0 38000.0		

Machine Learning Signal Generation

ML Modeling

Input

- Open/High/Low/Close/Volume of one currency pair
- Scale input by last close (mean of last close is 1)

Models

- Regression
 - Target: Return for next close compared to current close
 - LightGBM, Kernel Ridge, Linear regressor
- Binary classification
 - Target: Average of next close is higher/lower than current close
 - LightGBM and KNN classifier

Regression - Linear Regression

- Linear regression assumes the return at the end of the next time step is an affine function of the previous open, high, low, close, and volume, plus a mean-zero "error term"
 - Or, a "factor model" using those previous statistics as factors
- Parameters: None
- Loss function: Mean Squared Error (MSE)

Regression - Kernel Ridge

- Kernel ridge regression (KRR) combines Ridge regression (linear least squares with L2-norm regularization) with the kernel trick.
- Parameters:
 - alpha (Regularization strength)
 - kernel (Kernel mapping used internally)
 - gamma (Gamma parameter for RBF kernel)
 - degree (Degree of the polynomial kernel)

Binary Classification – KNN

- K Nearest Neighbors (KNN) classification
 - Find distances between a query and all data examples
 - Selected k nearest neighbors to the query
 - Vote for the most frequent label
- Parameters:
 - n_neighbors (number of neighbors to use)
 - Leaf_size
 - P (Measure distance using LP norm)

Classification/Regression - LightGBM

- Light Gradient Boosting Machine (LightGBM)
 - gradient boosting framework
 - tree based learning algorithms.
 - grows tree vertically (leaf-wise), by choosing the leaf with max delta loss.
- Parameters:
 - max_depth
 - num_leaves
 - min_split_gain
 - reg_alpha
 - \circ reg_lambda

Training Pipeline

- Train (cross val) Test
 - Train on first 20 days
 - Test of last week (5 days)
- Hyperparameter search using GridSearchCV
 - LGBM
 - KNN
 - Kernel Ridge

Sun.	Mon.	Tue.	Wed.	Thur.	Fri.	
					2/1	Train
2/3	2/4	2/5	2/6	2/7	2/8	
2/10	2/11	2/12	2/13	2/14	2/15	
2/17	2/18	2/19	2/20	2/21	2/22	
2/24	2/25	2/26	2/27	2/28	3/1	Test

Binary Classification

Sample Statistics: EURUSD

- x_axis: interval length (sec)_numinterval
- y_axis: Scoring (ROCAUC, F1, ACC)
- Observation across classifiers
 - 10_6: Stably high performance
 - 60_16: KNN outperforms LGB
 - 60_8: LGB sometimes dominates
 - 300_8: Tie
 - 300² KNN strictly outperforms
- Observation across intervals

Model Performances for EURUSD (Scoring: ROCAUC)

Binary Classification

Sample Statistics: GBPUSD

- x_axis: interval length (sec)_numinterval
- y_axis: Scoring (ROCAUC, F1, ACC)
- Observation across classifiers
 - 10_6: Still, stably high
 - 60_16: Tie; KNN no longer prevails ¹²
 - 60_8: Tie; LGB no longer dominates
 - 300_8: Tie; pattern preserved
 - 300_2: Still, seeing unstable LGB
- Generally **more** balanced and **accurate**
- F1 again scores best esp. for KNN

Regression

- Using kendaltau as regression matrix
- Sample statistics (fixing interval length= 300 and #interval = 8 for EURUSD)

Trading Profit (with regressor)

Make prediction based on kernel ridge regression for return value

- 5min, look back 2 intervals (10 minutes)
- Take action after every time interval
- Exit immediately at the next close
- Size each trade with minimum "confidence" then with tanh activation

Trading profit on 5 min interval

EURUSD

GBPUSD

15

10

Hour

5

20

Trading Profit (with classifier)

Make prediction based on KNN classifier

- 5min, look back 4 intervals (20 minutes)
- Take action after every time interval
 - Long if score > 0.85
 - Short if score < 0.15
- Exit immediately at the next close
- Size each trade with probability of up/down

Trading profit on 5 min interval

EURUSD

USDCAD

Observations for ML Models

Can achieve high F1/accuracy but NOT r2/ranking score

- Shorter intervals lead to higher scores but more difficult to act on without incurring many mistakes
 - E.g. Classification model is far less confident, low predicted probabilities
- Regression/classification behave similarly, capture the same signals
- Regressor seems to be more reliable

Need to correlate to actual price movement of the pairs

Next Steps

Achievements so Far

Analyze properties of data from Integral

• Preprocess to synchronize across LP by fixed time intervals

Trading Strategies

- Latency arbitrage
 - Small profit after accounting for network communication time
- Machine learning modeling with lots of hyperparameter search
 - Classification
 - KNN
 - Regression
 - Kernel ridge
 - Difficult to translate to consistent and verifiable profit

Final Report and Beyond

Create model to predict when to execute latency arbitrage Explore the use of other position sizing strategies

Trade a portfolio of currencies (cross-section) rather than a single one

• Use Modern Portfolio Theory to choose optimal portfolio weights to maximize Sharpe Ratio using estimates of mean return and covariance matrix of returns across pairs

Thanks