High Frequency Trading MSE 448 - Group 1

Thibaud Bruyelle Computational Engineering thibaudb@stanford.edu Tom Morvan Computational Engineering tommrvn@stanford.edu Brian Lui Computer Science brianlui@stanford.edu Julius Stener Computer Science stenerj@stanford.edu

Stanford University

June 3, 2020

1. Introduction

- 1.1 HFT
- 1.2 Strategy development framework
- 1.3 Data & General Statistics
- 2. Mean Reversal in HFT
 - 2.1 Statistical Principle
 - 2.2 Strategy
- 3. Pairs Trading in HFT
 - 3.1 Statistical Principle
 - 3.2 Strategy
- 4. Conclusion

Goal

Build a fully automated trading strategy that executes large amount of trades based on sub-second data.

Requires:

- ► Vast amount of *granular* order book data.
- Algorithms that produce *trading signals* in split-seconds.

Maystreet Simulator provides an ideal framework for HFT strategy development.

Maystreet Simulator

Full Market Replay order by order.

What's handled by the simulator:

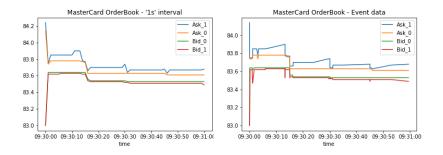
- Real-time order book data retrieval
- Trading order management and execution with slippage

What's not handled by the simulator:

- ► Market activity fees (Trading fees, Equity Borrow fees...)
- Reaction of other agents to our trading activity
- Multiday simulation

Algorithm Framework
Set parameters and start trading day
 At every time interval: Retrieve Market Data Update statistics Send and/or Cancel a trade
 At every order message from exchange: Check if our orders have been filled Update portfolio

Market Open Data

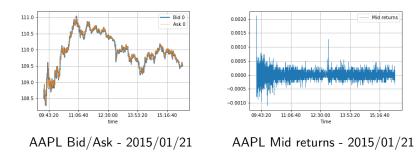


T. Bruyelle, T. Morvan, Brian Lui, Julius Stener, Stanford

Which statistical tools to assess these data ?

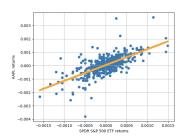
- Statistical tests (Is the time serie stationary?, Are the returns normally distributed?, Are these two series cointegrated?)
- Statiscal/Time Series Analysis (Any correlation in a given portfolio?, Can we create clusters within this portfolio?)
- Stochastic Modelling (Can we estimate parameters that provide us relevant information?)

- Bid and Ask series over a trading day
- Time interval can be very small (up to 1μ s)



In order to make an analysis of the returns series R_t, we use SPDR S&P 500 returns M_t to compute the linear regression :

 $R_t = \beta M_t + \alpha + \epsilon_t$



AAPL returns against Market

• We then used the residuals ϵ_t to do our analysis.

Mean Reversal relies on the assumption that longer term moving averages are more consistent than shorter term moving averages

Most-Relevant Hyperparameters Available:

- Short and Long Interval Periods
- Time Intervals between Strategy Executions
- Traded Universe
- Data to be tracked for the "Mean"

Using a statistical modelling approach can be useful to consider some metrics that will bring us relevant information.

- ► Hurst exponent *H*
- The Hurst exponent, H, measures the long-term memory of a time series, characterising it as either mean-reverting, trending or a random walk. We have :

$$\mathbb{E}(\frac{R(n)}{S(n)}) = Cn^{H}$$

The Ornstein–Uhlenbeck process X_t is defined by the following stochastic differential equation:

$$dX_t = \theta(\mu - X_t)dt + \sigma dW_t$$

- Useful model in a mean reversion context because the parameter θ is the speed of reversion.
- Thus, we can model the half-time which is the time it takes for the series to move half the distance towards its long term average :

$$T_{1/2} = \frac{\ln(2)}{\theta}$$

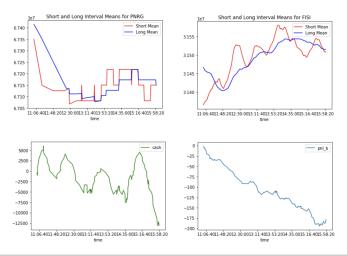
Traded Universe

- Utilized the Russell 2000 tickers
- Chose Small Caps due to their relative stability against market trends due to lower trading volumes
- Cleaned the Russell tickers for use on the Maystreet Simulator (resulted in < 1500 tickers)
- Type of "Mean"
 - Bid
 - Ask
 - Mid
 - Implemented due to the simplicity of tracking one set of means
 - Naively ignores the bid-ask spread cost when producing a trading signal

2. Mean Reversal - Results

2018-07-16

~\$10,000 traded with End of Day PNL at \$(178.16)



MSE 448 - Group 1

T. Bruyelle, T. Morvan, Brian Lui, Julius Stener, Stanford

2 Primary Methods we have identified as worth exploring

- Large-scale Grid Search
 - Due to the high-dimensionality of hyperparameters, the small-subset version of this will take 6 days
 - 1420 tickers across 200 hyper-parameter configurations with multiple random trials to determine the most profitable/least risk-inclined strategy tickers
- Reinforcement Learning
 - This is a task for RL due the innate ability to learn state and action pairs across high-dimensionality parameters
 - Barrier to implementation: running out of time due to the lost week

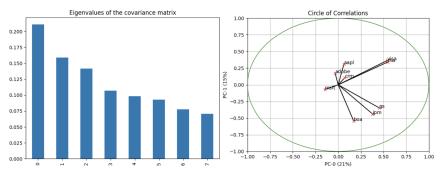
- Portfolio : AAPL, ADOBE, BOA, CRM, GS, JPM, MA, MSFT, VISA.
- Residual Returns et must be stationary to satisfy the assumptions of th PCA model.
- Augmented Dickey Fuller test assumes that :

$$\epsilon_t = \rho \cdot \epsilon_{t-1} + u_t$$

Test for the presence of a unit root, ie, $\mathcal{H}_0: \rho = 1$

Conclusion : For the returns series, we can always reject H₀ at all confidence levels so the models assuming that our observations must be *iid* can be used.

PCA to observe correlation patterns within the portfolio.



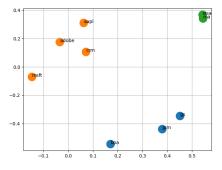
 Conclusion : We easily observe several trends and can notice a strong industry influence (technology, finance)

- ► For several reasons, we would like to study the association between two (or more) stocks (*e.g.* Pairs Trading)
- Correlation : when two securities move together in the same direction or opposite direction.
- Cointegration : when the distance between the pair doesn't change drastically over time.

Why studying cointegration ?

Granger – Engel test to check if two series x_t, y_t are cointegrated. We must have x_t, y_t ~ *I*(1) and y_t = α + βx_t + u_t with u_t ~ *I*(0).

- Another approaches to make associations within the portfolio using unsupervised algorithms :*clustering* algorithm.
- ► K-means with Euclidean distance



K-means with PCA reduction

Financial Framework

We define a new asset:

$$S = n_A S_A - n_B S_B$$

With $n_A, n_B > 0$ such that $S \approx 0$

No exposure on market movements

► Cash balance ≈ 0

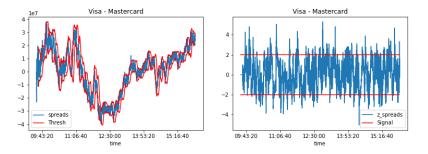
Statistics

We define:

$$Z = \frac{S - \mu_S}{\sigma_S}$$

Over a rolling time interval.

Day - 20181112



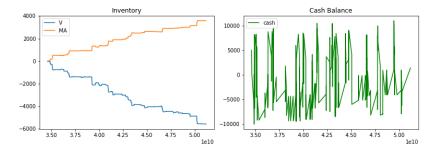
T. Bruyelle, T. Morvan, Brian Lui, Julius Stener, Stanford

Algorithm Framework

Set parameters and start trading day

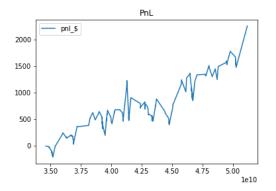
- At every time interval:
 - Retrieve Market Data
 - Update statistics
 - Cancel all existing orders
 - Decide to send a trade
- At every order message from exchange:
 - Check if our orders have been filled
 - Update portfolio

Day - 20181112



T. Bruyelle, T. Morvan, Brian Lui, Julius Stener, Stanford

Day - 20181112



Mean Reversion:

- Few hyper-parameters with high-dimensionality.
- Simulator is powerful, but makes multi-day backtesting slow and inefficient.
- Next Steps: Optimizing the backtesting Class to increase the descent speed to optimum.

Pair Trading:

- ► A lot hyper-paramters.
- Simulator framework hard to backtest.
- Incorporating mean reversal idea to spot trends in pairs.