High-frequency Forex data

AUDUSD:CUR
AUD-USD X-RATE

| 0.7060_{USD} | +0.0018 | +0.26% |

Environment (Market)

Agent

Features Reward

Action [-1, 1]

- 1: Long
- 0: Short
- -1: Short

Quota

Bid

- LP3
- LP1
- LP4

Ask

- LP2
- LP3
- LP4
High Frequency Forex Data (1/2)

<table>
<thead>
<tr>
<th>Time</th>
<th>Bid price</th>
<th>Bid LP</th>
<th>Bid Quota</th>
<th>Ask price</th>
<th>Ask LP</th>
<th>Ask Quota</th>
</tr>
</thead>
<tbody>
<tr>
<td>20190101 00:00:00</td>
<td>0.72714</td>
<td>LP-1</td>
<td>1,000,000</td>
<td>0.72718</td>
<td>LP-2</td>
<td>1,000,000</td>
</tr>
</tbody>
</table>

Center around 0

AUDUSD log returns

Fat tail

AUDUSD log return qq plot

Low autocorrelation

Autocorrelation of lag returns

No prior distribution assumption over returns
High Frequency Forex Data (2/2)

Correlation b/w currency pairs

Correlation b/w log return and bid-ask spreads

Additional features from other currency pairs and spreads
Forex Trading Approaches

How is Forex traditionally traded?
- A few key decisions:
 - Currency pair to trade
 - Position size
 - When to enter/exit
 - Which dealer to use/how to execute the trade
 - Bid-ask spread

- Traditional strategies use Momentum, Mean Reversion, Pivots, Fundamental Strategy, Stop-loss orders
 - Trend-based -> machine learning?
 - Scalping, Day trading, Longer time frames
Reinforcement learning for forex trading

- Reinforcement Learning (RL) is a type of machine learning technique that enables an agent to learn in an interactive environment by trial and error using feedback from its own actions and experiences.
- Trading is an “iterative” process, and past decisions affect future, long-term rewards in indirect ways
 - Compared to supervised learning, we are not making or losing money at a single time step...
- Traditional “up/down” prediction models do not provide an actionable trading strategy
- Incorporate longer time horizon
- Give us more autonomy in trading policy, regularize the model from trading too frequently
Baseline model (1/3)

Goal
Maximize total (undiscounted) return over **1-hour horizon** by making short/long trading decisions for **AUDUSD** per second

Input
Per second bid-ask prices for **AUDUSD** and other available currency pairs; include the recent **16-second returns** as features

Action
Float between -1 (short the currency with all cash) and 1 (long the currency with all cash)

Method

Policy Gradient
- Maximize the “expected” reward when following a policy π

 $$J(\theta) = \mathbb{E}_{\pi_\theta} \left[\sum_{t=0}^{\tau} r_t \right]$$

- Actions are chosen by ‘actor’, i.e. mapping current features to next action
- Gradient descent on π to find the optima

Action
- Position $[-1,1]$

Baseline
- **Tanh**
- **Linear layer (256, 1)**

Features
- 8 currency pairs * 16 recent bid and ask prices
Baseline model (2/3)

In detail

\[a_t = \text{Tanh}(w x_{t-1} + b) \]
\[r_t = f(a_t, a_{t-1}) \]
\[R = r_1 + \ldots + r_T \]

Profits are calculated in two ways

Mid-price approximation

\[
\text{action} \times \left(\frac{\text{Ask}[t+1] + \text{bid}[t+1]}{2} - \frac{\text{Ask}[t] + \text{bid}[t]}{2} \right)
\]

Incorporating bid-ask spreads

<table>
<thead>
<tr>
<th>(a_{t-1}/a_t)</th>
<th>-1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1</td>
<td>0</td>
<td>-\text{Ask}[t]</td>
<td>-2*\text{Ask}[t]</td>
</tr>
<tr>
<td>0</td>
<td>\text{Bid}[t]</td>
<td>0</td>
<td>-\text{Ask}[t]</td>
</tr>
<tr>
<td>1</td>
<td>2*\text{Bid}[t]</td>
<td>\text{Bid}[t]</td>
<td>0</td>
</tr>
</tbody>
</table>
After 5-6 CPU hours’ training, RL agent manages to yield **0.4% per hour** on the validation data.

After 5-6 CPU hours’ training, RL agent manages to yield **0.2% per hour** on the validation data.
Next Steps

● **Incorporate better features**
 - Technical features (e.g. chart pattern)

● **Build a better architecture**
 - From linear layers to neural networks

● **Exploration**
 - Explore actions may yield better future rewards

● **Train with more computing power**
 - Cloud computing
 - Parallel computing
Reference

