High Frequency Statistical Arbitrage Model

Pair and cluster trading using price movement per second in correlated companies

Dottie, Luisa, Cedrick, Vidushi, Tyler

Background

Statistical arbitrage:

- Pairs and cluster trading: trade based on the linear combination of assets
- Rooted in mean-reversion principles

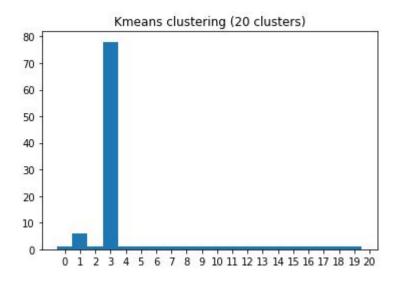
High frequency trading:

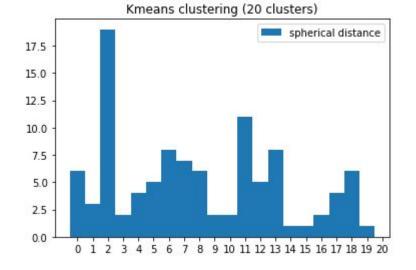
• Trade orders down to a fraction of a second

Our model:

- Combine HFT and statistical arbitrage strategies based on an optimal band strategy
- Universe: NASDAQ 100 companies
- Timescale: seconds
- Data: Thesys

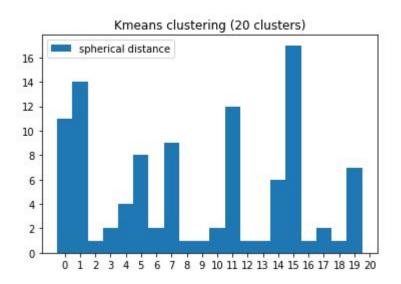
Outline

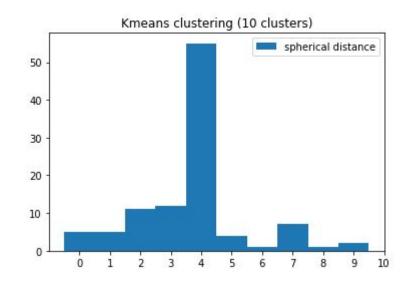

- 1. Company selection
- 2. Our approach
- 3. Future steps


Company Selection: Methodology

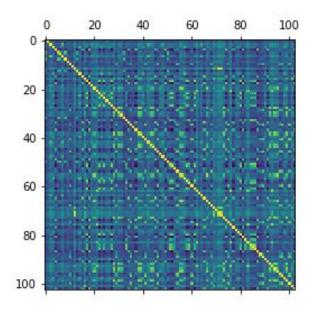
- Naive method: select pairs according to our intuition
- Automated selection: clustering.
 - On which data ? All residual history or residuals at particular time stamps?
- Data preprocessing:
 - Remove market impact by subtracting beta coefficient from the returns

Company Selection: Results

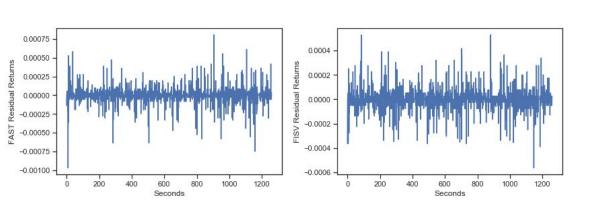

• Method 1: K-means on the history of residuals (d=1260)

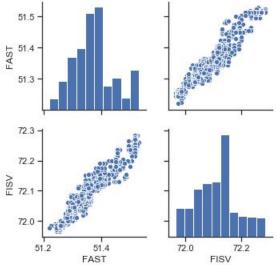


Company Selection: Results


Importance of removing market effect

Company Selection: Results

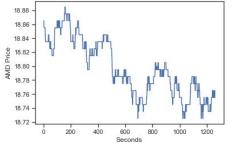

- Method 2: Track evolution of clusters at each time stamp (d=1)
 - Select the pairs with the highest correlation
- Next steps:
 - Check the hypothesis
 - Compare the methods

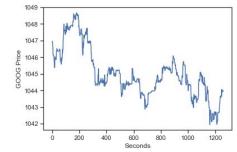

Cointegration of Pairs: Methodology

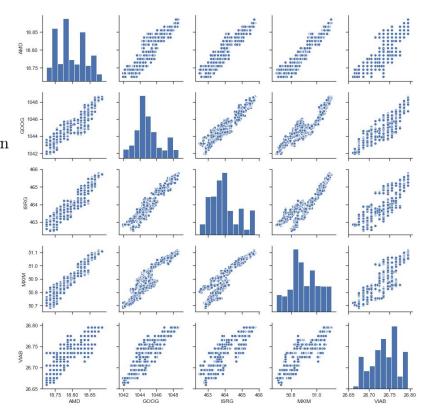
- Determines relationship between non-stationary time series variables
- Engle-Granger Method

 x_t and y_t are non-stationary time series variables if $y_t - \beta x_t = u_t$ where u_t is stationary, then cointegration

Cointegration test run on residual returns

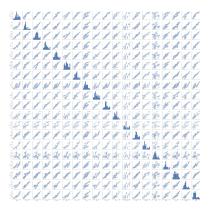


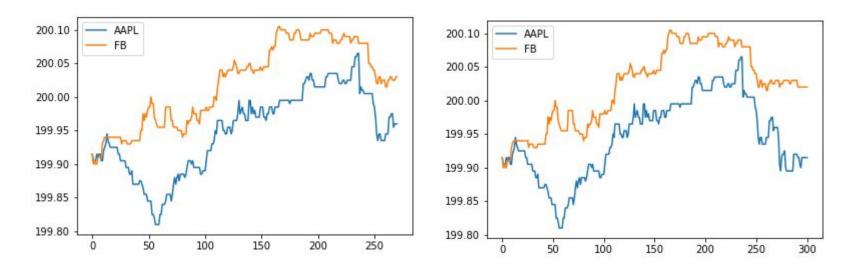

Cointegration of Clusters: Methodology


- Johansen Test for more than 2 time series
 - Verifies relationship between multiple stocks returned by k-means clustering

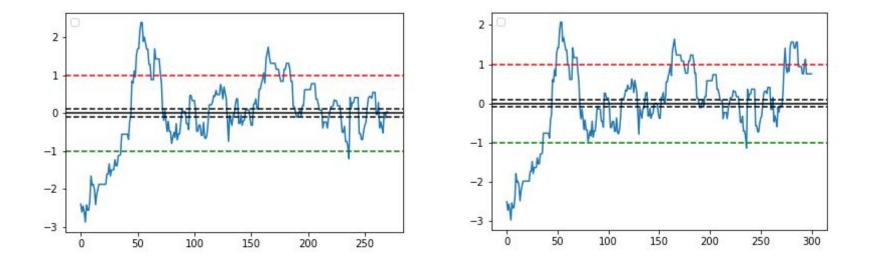
 x_{1_t}, \ldots, x_{k_t} are non-stationary time series variables if $x_{j_t} - \sum_{i=1, i \neq j}^k \beta_i x_{i_t} = u_t$ where u_t is stationary, then cointegration

• Extension of pair trading to clusters of stocks?

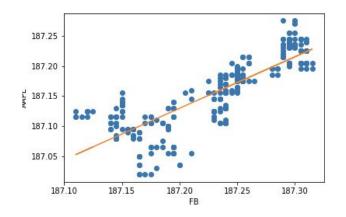



Cointegration of Pairs and Clusters: Discussion

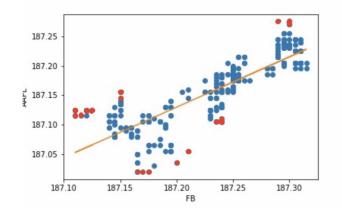
- Highly dependent on k-means clustering to produce good results
 - All clusters returned by k-means are highly correlated
- Increasingly difficult to determine cointegration with larger clusters
 - More computationally expensive (matrix inverse)
 - Lower accuracy due to more inaccurate critical value approximation (Mackinnon et al. 1999, Onatski et al. 2018)
- Future steps: develop a trading strategy using clusters rather than pairs


Running Simulations on Cointegrated Clusters

- Used Thesys for Simulations
- Used data from 04/12/2019 from 12:00-12:05 pm and 1s intervals


Running Simulations on Cointegrated Clusters

- Linear Regression on the mid prices of the stocks
- Calculated the running average and running standard deviation


Future Steps: Modeling Residuals

- Modeling residuals beyond linear regression using midprices
 - Adding variables to regression model (e.g. bid, ask, volume, lags of midprices)
 - Autocorrelation and Partial Autocorrelation Functions
 - Classification Methods

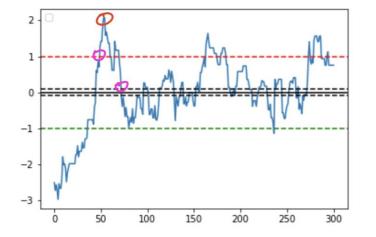
Linear Regression

Classification Method Idea

Future Steps: Optimal Band Selection

• Stochastic Differential Equations in order to optimize: [1]

- Optimal Band Selection
- Optimal Entry and Exit Strategy


Can be thought as Maximizing a value/utility Function

Maximization for exiting a long position:

$$H_{+}^{(\tau)}(t,\epsilon) = \mathbb{E}_{t,\epsilon}[e^{-\rho(\tau-t)}(\epsilon_{\tau}-c)]$$

Maximization for entering a long position

$$G_{+}^{(\tau)}(t,\epsilon) = \mathbb{E}_{t,\epsilon}[e^{-\rho(\tau-t)}(H_{+}(t,\epsilon_{\tau}) - \epsilon_{\tau} - c)]$$

Other Steps and Summary

Our steps:

- 1. Optimization of company selection
- 2. Cointegration of pairs & clusters
- 3. Modeling residuals
- 4. Optimal band selection
- 5. Backtesting and executing trades

Questions?

References

[1] Cartea Alvaro, Jaimungal Sebastian, Penalva José(2015). Algorithmic And High-Frequency Trading.

[2] Almgren Robert, Chriss Neil(1999). Optimal Execution of Portfolio Transactions.

[3] Elliott, Robert & van der Hoek, John & P. Malcolm, William. (2005). Pairs Trading. Quantitative Finance.