# Reinforcement Learning for FX trading

Yuqin Dai, Chris Wang, Iris Wang, Yilun Xu

# A brief intro to our strategy...

# RL Strategy on High-frequency Forex (1/2)

### How is Forex traditionally traded?

- A few key decisions:
  - Currency pair to trade
  - Position size
  - When to enter/exit
  - Which dealer to use/how to execute the trade
  - Bid-ask spread
- Traditional strategies use Momentum, Mean Reversion, Pivots, Fundamental Strategy, Stop-loss orders
  - Trend-based -> machine learning?
  - Scalping, Day trading, Longer time frames

# RL Strategy on High-frequency Forex (2/2)

#### **Reinforcement learning for forex trading**

- Reinforcement Learning (RL) is a type of machine learning technique that enables an agent to learn in an interactive environment by trial and error using feedback from its own actions and experiences.
- Trading is an "iterative" process, and past decisions affect future, long-term rewards in indirect ways
  - Compared to supervised learning, we are not making or losing money at a single time step...
- Traditional "up/down" prediction models do not provide an actionable trading strategy
- Incorporate longer time horizon
- Give us more autonomy in trading policy, regularize the model from trading too frequently



# Since midterm presentation...

- → A larger dataset: 6 days -> 1 month (25 trading days)
- → We found a data processing bug in our previous result, which indicates our previous PnL result is no longer valid
- → More models: linear direct RL -> deep direct RL and DQN
- → More currency pairs: AUDUSD -> AUDUSD, EURUSD, GBPUSD
- → Hyperparameter tuning and error analysis
- $\rightarrow$  Migrate to cloud

# Data Processing and Training Pipeline

#### **Data Processing**

- Clean raw dataset and sample it into a second-level one
- Pad the data for each liquidity provider to the same time frame
- Build an order book by picking the best bid/ask prices
- Extract features using bid/ask/mid price returns from all 8 currency pairs
- Train one target currency at a time
- Choose model structure based on AUDUSD while train the same model for EURUSD and GBPUSD

#### Training Pipeline

|                  | 2/1  | 2/3  | 2/4  | 2/5  | 2/6  | Train Week 1 |
|------------------|------|------|------|------|------|--------------|
| Eval/test Week 1 | 2/7  | 2/8  | 2/10 | 2/11 | 2/12 | Train Week 2 |
| Eval/test Week 2 | 2/13 | 2/14 | 2/15 | 2/17 | 2/18 | Train Week 3 |
| Eval/test Week 3 | 2/19 | 2/20 | 2/21 | 2/22 | 2/24 |              |
|                  | 2/25 | 2/26 | 2/27 | 2/28 | 3/1  |              |

AUDUSD, EURUSD, GBPUSD

### Deep direct reinforcement learning model...

# Deep Direct RL Model (1/2)

| Goal   | Maximize total (undiscounted) return over <b>1-hour horizon</b> by making short/long trading decisions for target currency per second                                                                                          |
|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Input  | <b>Per second</b> bid-ask prices for target currency and other available currency pairs; include the recent <b>16-second returns</b> as features                                                                               |
| Action | Float between -1 (short the currency with all cash) and 1 (long the currency with all cash)                                                                                                                                    |
| Method | Policy Gradient<br>• Maximize the "expected" reward when following a policy $\pi$<br>• Actions are chosen by 'actor', i.e. mapping current features to next action<br>• Gradient descent on $\pi$ to find the optima<br>Reward |
|        | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                           |
|        | dropout, p = 0.2                                                                                                                                                                                                               |

# Deep Direct RL Model (2/2)

#### In detail

$$\begin{array}{l} a_t = Tanh(< w, x_{t-1} > + < w', a_{t-1} > + b) \\ r_t = f(a_t, a_{t-1}) \\ R = r_1 + \ldots + r_{\tau} \end{array}$$

### Rewards incorporating bid-ask spreads

|    | -1       | 0       | 1         |
|----|----------|---------|-----------|
| -1 | 0        | -Ask[t] | -2*Ask[t] |
| 0  | Bid[t]   | 0       | -Ask[t]   |
| 1  | 2*Bid[t] | Bid[t]  | 0         |

#### REINFORCE, A Monte-Carlo Policy-Gradient Method (episodic), for estimating $\pi_{\theta} \approx \pi_*$

Input: a differentiable policy parameterization  $\pi(a|s, \theta)$ Algorithm parameter: step size  $\alpha > 0$ Initialize policy parameter  $\theta \in \mathbb{R}^{d'}$  (e.g., to **0**)

Loop forever (for each episode): Generate an episode  $S_0, A_0, R_1, \ldots, S_{T-1}, A_{T-1}, R_T$ , following  $\pi(\cdot|\cdot, \theta)$ Loop for each step of the episode  $t = 0, \ldots, T-1$ :  $G \leftarrow$  return from step t ( $G_t$ )  $\theta \leftarrow \theta + \alpha \gamma^t G \nabla_{\theta} \ln \pi(A_t|S_t, \theta)$ 

# Hyperparameter Tuning and Experimentation

|      | Eval Reward, epoch 20 |
|------|-----------------------|
| Adam |                       |
| SGD  | $\checkmark$          |

| Number of Features | Eval Reward, epoch 20 |
|--------------------|-----------------------|
| 256                | $\checkmark$          |
| 512                |                       |

| Bias                  | Eval Reward, epoch 20 |
|-----------------------|-----------------------|
| Bias in last layer    | $\checkmark$          |
| No bias in last layer |                       |

| Number of hidden layers | Eval Reward, epoch 20 |
|-------------------------|-----------------------|
| (64, 8)                 | $\checkmark$          |
| (50, 50)                |                       |



Reward with dropout vs no dropout

# Hyperparameter Analysis

- Dropout
  - Prevents our model from overfitting as the epoch number increases
- Number of features
  - Too many features can be harmful because they impart noise and make it harder for the model to converge
- Bias
  - An additional parameter in the last layer can be helpful in allowing the model to learn new relationships
- Number of hidden layers
  - The number of hidden layers should decrease gradually
- Adam vs. SGD
  - Adam is faster at first in learning, but SGD generalizes better long-term

### Deep Direct Reinforcement Learning model performance on eval set



### Deep Direct Reinforcement Learning model performance on eval & test set



Lose USD 0.25 per hour with per AUD 1,000 initial capital, with std of USD 1.745 Yield ~ -0.036% Breakeven per hour with per AUD 1,000 initial capital, with std of USD 0.811 Yield ~ 0.000% Lose USD 0.12 per hour with per AUD 1,000 initial capital, with std of USD 4.06 Yield ~ -0.017%

### Deep Direct Reinforcement Learning model performance on eval set



12 hours' training Gain USD 0.62 per hour with per EUR 1,000 initial capital Yield ~ 0.055% 12 hours' training Gain USD 0.87 per hour with per EUR 1,000 initial capital Yield ~ 0.078% 12 hours' training Lose USD 0.63 per hour with per EUR 1,000 initial capital Yield ~ -0.056%

### Result Analysis: EURUSD (2/2)

#### Deep Direct Reinforcement Learning model performance on eval & test set



Gain USD 0.18 per hour with per EUR 1,000 initial capital, with std of USD 2.758 Yield ~ 0.014%

Gain USD 0.30 per hour with per EUR 1,000 initial capital, with std of USD 2.593 Yield ~ 0.023% Gain USD 0.69 per hour with per EUR 1,000 initial capital, with std of USD 7.291 Yield ~ 0.052%

# Result Analysis: GBPUSD (1/2)

### Deep Direct Reinforcement Learning model performance on eval set



## Result Analysis: GBPUSD (2/2)

#### Deep Direct Reinforcement Learning model performance on eval & test set



Lose USD 0.21 per hour with per GBP 1,000 initial capital, with std of USD 1.589 Yield ~ -0.016%

Gain USD 0.072 per hour with per GBP 1,000 initial capital, with std of USD 1.298 Yield ~ 0.0056% Lose USD 0.413 per hour with per GBP 1,000 initial capital, with std of USD 1.478 Yield ~ -0.032%

# Across-time/ Currency Analysis (1/2)

### Deep Direct Reinforcement Learning model performance on lag data







GBPUSD model trained on train week 1 and tested on eval week 3

# Across-Time/ Currency Analysis (2/2)



### Deep Direct Reinforcement Learning model gradient w.r.t. first 32 features

GBPUSD model gradients on eval week 1

GBPUSD model gradients on eval week 1, 2 and 3

Deep DRL model keeps looking for the same "patterns" across different time horizons



# Deep Q-Network RL model...

# Deep Q-Network Model (1/3)

**Goal** Estimate long-term discounted state-action pair values by Q network, and train an optimal policy based on the estimation

Input Per second bid-ask prices for target currency and mid price of other available currency pairs; include the recent 16-second log returns, timestamp and previous position as features;

Action -1 (short), 0 (neutral) or 1 (long)

Method

$$\mathcal{L}(\theta) = \mathbb{E}_{(s, \boldsymbol{a}, \boldsymbol{r}, \boldsymbol{s'}) \sim \mathcal{D}} \left[ \| \mathbf{r} + \gamma Q_{\theta^{-}}(\boldsymbol{s'}, \arg \max_{a'} Q_{\theta}(\boldsymbol{s'}, a')) - Q_{\theta}(s, \boldsymbol{a}) \|^{2} \right]$$
$$\theta \leftarrow \theta - \alpha \nabla_{\theta} \mathcal{L}(\theta)$$



# Deep Q-Network Model (2/3)

- 1: Initialize  $T \in \mathbb{N}$ , recurrent Q-network  $Q_{\theta}$ , target network  $Q_{\theta^-}$  with  $\theta^- = \theta$ , dataset  $\mathcal{D}$  and environment E, steps = 1
- 2: Simulate env E from dataset  $\mathcal{D}$
- 3: Observe initial state s from env E
- 4: for each step do
- 5:  $steps \leftarrow steps + 1$
- 6: Select greedy action w.r.t.  $Q_{\theta}(s, a)$  and apply to env E
- 7: Receive reward r and next state s' from env E
- 8: Augment actions to form  $\mathcal{T} = (s, a, r, s')$  and store  $\mathcal{T}$  to memory  $\mathcal{D}$
- 9: **if**  $\mathcal{D}$  is filled and *steps* mod T = 0 **then**
- 10: Sample a sequence of length T from  $\mathcal{D}$
- 11: Train network  $Q_{\theta}$
- 12: end if
- 13: Soft update target network
- 14: end for

# Deep Q-Network Model (3/3)

#### **Customize 1: environment**

• Self-defined environment which can draw training data point (bid-ask price with features) in order, without leaking the future price

#### **Customize 2: memory replay**

• Choose a small buffer size to conduct memory replay, which incorporates our belief that the most recent data points are more relevant in the market

#### **Customize 3: exploration strategy**

- Use standard epsilon greedy to encourage exploration during policy training
- Furthermore, use action augmentation to encourage deep exploration. For example, our policy chooses action 1 at time step t, with reward r. Then we add (s, 1, r), (s, -1, r) and (s, 0, 0) to the buffer

### **Deep Q-Network Reinforcement Learning model performance**



Running loss of the model decreases monotonically, while the training and eval reward fail to increase over time, accordingly

# Result Analysis: AUDUSD (2/2)

#### **Test result**

• RL Agent learns to take neutral positions only (action = 0) and breaks even on the test set

#### **Conclusion and explanation**

- Running loss decreases monotonically while training and eval reward diverge
  - The Q-Network can successfully model the infinite discounted state-action value
  - The Q-Network may not represent 1-hour trading returns well
  - Epsilon greedy + action augmentation are not sufficient to train the optimal policy
- Agent decides to make almost no trade on test set
  - Limited flexibility: we only allow the agent to choose from {-1, 0, 1}
  - Confusing signals: we give a bunch of signals to the model without delicate feature engineering. The agent may learn to keep neutral only after seeing large amount of data points with close features

# Our key takeaways...

### Conclusions

### • Why Forex RL trading works

- trend-based; resembles factor model

### • DRL vs. DQN

- DRL is more interesting to explore

### • Out-of-sample performance varies with time periods - performs the best when test period is 1 week after training period

### • Performance largely depends on feature selection

- 16 features perform better than 32
- Deep models work better
  - able to capture more complex inter-feature relations

### Potential Next Steps

### • Incorporate better features

- Feature engineering (e.g. Time-series analysis)

### • Build a better architecture

- Add residual blocks
- LSTM
- More Training and Hyperparameter tuning
  - Train with data of a longer time span
  - Regularization, optimizer
- Add an Online Learning Scheme
  - Update with incoming data

Thank you for listening! Any questions?



# Reference

- 1. Y. Deng, F. Bao, Y. Kong, Z. Ren and Q. Dai, "Deep Direct Reinforcement Learning for Financial Signal Representation and Trading," in *IEEE Transactions on Neural Networks and Learning Systems*, vol. 28, no. 3, pp. 653-664, March 2017.
- 2. Huang, Chien Yi. "Financial Trading as a Game: A Deep Reinforcement Learning Approach." *arXiv* preprint arXiv:1807.02787 (2018).
- 3. J. Moody and M. Saffell, "Learning to trade via direct reinforcement," in *IEEE Transactions on Neural Networks*, vol. 12, no. 4, pp. 875-889, July 2001.