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A brief intro to our strategy...
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RL Strategy on High-frequency Forex (1/2)

How is Forex traditionally traded?
- A few key decisions:

- Currency pair to trade
- Position size
- When to enter/exit
- Which dealer to use/how to execute the trade
- Bid-ask spread

- Traditional strategies use Momentum, Mean Reversion, Pivots, Fundamental 
Strategy, Stop-loss orders

- Trend-based -> machine learning?
- Scalping, Day trading, Longer time frames
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RL Strategy on High-frequency Forex (2/2)

Reinforcement learning for forex trading
- Reinforcement Learning (RL) is a type of machine learning technique that enables an agent to 

learn in an interactive environment by trial and error using feedback from its own actions and 
experiences.

- Trading is an “iterative” process, and past decisions affect future, long-term rewards in indirect 
ways

- Compared to supervised learning, we are not making or losing money at a single time step…
- Traditional “up/down” prediction models do not provide an actionable trading strategy
- Incorporate longer time horizon
- Give us more autonomy in trading policy, regularize the model from trading too frequently
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➔ A larger dataset: 6 days -> 1 month (25 trading days)

➔ We found a data processing bug in our previous result, which indicates our 

previous PnL result is no longer valid

➔ More models: linear direct RL -> deep direct RL and DQN

➔ More currency pairs: AUDUSD -> AUDUSD, EURUSD, GBPUSD

➔ Hyperparameter tuning and error analysis

➔ Migrate to cloud

Since midterm presentation...
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Data Processing and Training Pipeline

Data Processing Training Pipeline

- Clean raw dataset and sample it 
into a second-level one

- Pad the data for each liquidity 
provider to the same time frame

- Build an order book by picking the 
best bid/ask prices

- Extract features using bid/ask/mid 
price returns from all 8 currency 
pairs

- Train one target currency at a time
- Choose model structure based on 

AUDUSD while train the same 
model for EURUSD and GBPUSD

AUDUSD, EURUSD, GBPUSD
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Deep direct reinforcement learning model...
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Deep Direct RL Model (1/2)

Policy Gradient
● Maximize the “expected” reward when following a policy π
● Actions are chosen by ‘actor’, i.e. mapping current features to next action
● Gradient descent on π to find the optima

Goal Maximize total (undiscounted) return over 1-hour horizon by making short/long trading 
decisions for target currency per second

Input

Action

Method

Per second bid-ask prices for target currency and other available currency pairs; include the 
recent 16-second returns as features

Float between -1 (short the currency with all cash) and 1 (long the currency with all cash)
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Deep Direct RL Model (2/2)

In detail

-1 0 1
-1 0 -Ask[t] -2*Ask[t]
0 Bid[t] 0 -Ask[t]
1 2*Bid[t] Bid[t] 0

Rewards incorporating bid-ask spreads
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Hyperparameter Tuning and Experimentation

Eval Reward, epoch 20

Adam

SGD ✔

Number of Features Eval Reward, epoch 20

256 ✔

512

Bias Eval Reward, epoch 20

Bias in last layer ✔

No bias in last layer

Number of hidden layers Eval Reward, epoch 20

(64, 8) ✔

(50, 50)

Reward with dropout vs no dropout
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Hyperparameter Analysis

● Dropout
○ Prevents our model from overfitting as the epoch number increases

● Number of features
○ Too many features can be harmful because they impart noise and make it 

harder for the model to converge
● Bias

○ An additional parameter in the last layer can be helpful in allowing the model 
to learn new relationships 

● Number of hidden layers
○ The number of hidden layers should decrease gradually

● Adam vs. SGD
○ Adam is faster at first in learning, but SGD generalizes better long-term
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Result Analysis: AUDUSD (1/2)

Deep Direct Reinforcement Learning model performance on eval set

12 hours’ training
Breakeven per hour with per AUD 

1,000 initial capital
Yield ~ 0.000% 

12 hours’ training
Breakeven per hour with per AUD 

1,000 initial capital
Yield ~ 0.000% 

12 hours’ training
Lose USD 1.03 per hour with per 

AUD 1,000 initial capital
Yield ~ -0.147% 
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Result Analysis: AUDUSD (2/2)

Deep Direct Reinforcement Learning model performance on eval & test set

Lose USD 0.25 per hour with per 
AUD 1,000 initial capital, with std 

of USD 1.745
Yield ~ -0.036% 

Breakeven per hour with per AUD 
1,000 initial capital, with std of USD 

0.811
Yield ~ 0.000% 

Lose USD 0.12 per hour with per 
AUD 1,000 initial capital, with std 

of USD 4.06
Yield ~ -0.017% 
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Result Analysis: EURUSD (1/2)

Deep Direct Reinforcement Learning model performance on eval set

12 hours’ training
Gain USD 0.62 per hour with per 

EUR 1,000 initial capital
Yield ~ 0.055% 

12 hours’ training
Gain USD 0.87 per hour with per 

EUR 1,000 initial capital
Yield ~ 0.078% 

12 hours’ training
Lose USD 0.63 per hour with per 

EUR 1,000 initial capital
Yield ~ -0.056% 
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Result Analysis: EURUSD (2/2)

Deep Direct Reinforcement Learning model performance on eval & test set

Gain USD 0.18 per hour with per 
EUR 1,000 initial capital, with std of 

USD 2.758
Yield ~ 0.014% 

Gain USD 0.30 per hour with per 
EUR 1,000 initial capital, with std of 

USD 2.593
Yield ~ 0.023% 

Gain USD 0.69 per hour with per 
EUR 1,000 initial capital, with std of 

USD 7.291
Yield ~ 0.052% 
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Result Analysis: GBPUSD (1/2)

Deep Direct Reinforcement Learning model performance on eval set

12 hours’ training
Lose USD 0.55 per hour with per 

GBP 1,000 initial capital
Yield ~ -0.044% 

12 hours’ training
Breakeven per hour with per GBP 

1,000 initial capital
Yield ~ 0.000% 

12 hours’ training
Lose USD 0.74 per hour with per 

EUR 1,000 initial capital
Yield ~ -0.058% 



Font: 
Roboto 14

Result Analysis: GBPUSD (2/2)

Deep Direct Reinforcement Learning model performance on eval & test set

Lose USD 0.21 per hour with per 
GBP 1,000 initial capital, with std 

of USD 1.589
Yield ~ -0.016% 

Gain USD 0.072 per hour with per 
GBP 1,000 initial capital, with std 

of USD 1.298
Yield ~ 0.0056% 

Lose USD 0.413 per hour with per 
GBP 1,000 initial capital, with std 

of USD 1.478
Yield ~ -0.032% 
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Across-time/ Currency Analysis (1/2)

Deep Direct Reinforcement Learning model performance on lag data

GBPUSD model trained on train week 1 
and tested on eval week 2

GBPUSD model trained on train week 1 
and tested on eval week 3
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Across-Time/ Currency Analysis (2/2)

Deep Direct Reinforcement Learning model gradient w.r.t. first 32 features

GBPUSD model gradients on eval week 1 GBPUSD model gradients on eval week 1, 
2 and 3

Deep DRL model keeps looking for the same “patterns” across different time horizons
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Deep Q-Network RL model...



Font: 
Roboto 14

Deep Q-Network Model (1/3)

Goal Estimate long-term discounted state-action pair values by Q network, and train an optimal 
policy based on the estimation

Input

Action

Method

Per second bid-ask prices for target currency and mid price of other available currency pairs; 
include the recent 16-second log returns, timestamp and previous position as features; 

-1 (short), 0 (neutral) or 1 (long)
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Deep Q-Network Model (2/3)
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Deep Q-Network Model (3/3)

Customize 1: environment
● Self-defined environment which can draw training data point (bid-ask price with features) in 

order, without leaking the future price

Customize 2: memory replay
● Choose a small buffer size to conduct memory replay, which incorporates our belief that 

the most recent data points are more relevant in the market

Customize 3: exploration strategy
● Use standard epsilon greedy to encourage exploration during policy training
● Furthermore, use action augmentation to encourage deep exploration. For example, our 

policy chooses action 1 at time step t, with reward r. Then we add (s, 1, r), (s, -1, r) and (s, 
0, 0) to the buffer
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Result Analysis: AUDUSD (1/2)

Deep Q-Network Reinforcement Learning model performance

Running loss of the model decreases monotonically, while the training and eval reward fail to 
increase over time, accordingly
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Result Analysis: AUDUSD (2/2)

Test result
● RL Agent learns to take neutral positions only (action = 0) and breaks even on the test set

Conclusion and explanation
● Running loss decreases monotonically while training and eval reward diverge

- The Q-Network can successfully model the infinite discounted state-action value
- The Q-Network may not represent 1-hour trading returns well
- Epsilon greedy + action augmentation are not sufficient to train the optimal policy

● Agent decides to make almost no trade on test set
- Limited flexibility: we only allow the agent to choose from {-1, 0, 1}
- Confusing signals: we give a bunch of signals to the model without delicate feature 

engineering. The agent may learn to keep neutral only after seeing large amount of 
data points with close features
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Our key takeaways...
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Conclusions

● Why Forex RL trading works
- trend-based; resembles factor model

● DRL vs. DQN
- DRL is more interesting to explore

● Out-of-sample performance varies with time periods
- performs the best when test period is 1 week after training period

● Performance largely depends on feature selection
- 16 features perform better than 32

● Deep models work better
- able to capture more complex inter-feature relations
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Potential Next Steps

● Incorporate better features 
- Feature engineering (e.g. Time-series analysis)

● Build a better architecture 
- Add residual blocks
- LSTM

● More Training and Hyperparameter tuning
- Train with data of a longer time span
- Regularization, optimizer

● Add an Online Learning Scheme
- Update with incoming data



Font: 
Roboto 14

Thank you!

Thank you for listening! 
Any questions?
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