# Optimal High-Frequency Market Making

### Takahiro Fushimi, Christian González Rojas and Molly Herman

Stanford University

May 8, 2018

| Market Making | Approach           | Preliminary Results | Future Work |
|---------------|--------------------|---------------------|-------------|
| •             |                    |                     |             |
| Eundomontol   | a of Market Mr     | ling                |             |
| Fundamenta    | S OF IVIALKEL IVIA | aking               |             |





< 67 ►

| Market Making | Approach | Preliminary Results | Future Work |
|---------------|----------|---------------------|-------------|
|               | •0       |                     |             |
| Madal fau aut |          |                     |             |
| ivide for bri | ce       |                     |             |

## Optimal Bid and Ask Model

We will use the framework developed by Avellaneda and Stoikov (2008), which obtains optimal bid and ask:

Agent optimizes its value function:

$$v(x,s,q,t) = \mathbb{E}_t[-e^{-\gamma(x+qS_T)}]$$

to obtain the market-maker's indifference price:

$$r(s,t) = s - q\gamma\sigma^2(T-t)$$

• Which allows the market-maker to obtain the optimal spread:

$$\delta^{a} + \delta^{b} = \gamma \sigma^{2} (T - t) + \frac{2}{\gamma} \ln \left( 1 + \frac{\gamma}{\kappa} \right)$$

**Problem**: Does not address inventory risk properly. Symmetric spread is an issue.

| Market Making | Approach        | Preliminary Results | Future Work |
|---------------|-----------------|---------------------|-------------|
|               | 00              |                     |             |
| Model for inv | ventory control |                     |             |

#### Dynamic Order Size

We will use a decaying function to model the size of our orders, unlike Guéant, Lehalle and Fernandez-Tapia (2012), who cap trading at a maximum inventory level.



This allows us to keep trading and profit from rebates.

**Optimal High-Frequency Market Making** 

| Market Making  | Approach | Preliminary Results | Future Work |
|----------------|----------|---------------------|-------------|
|                |          | •0                  |             |
| Preliminary re | esults   |                     |             |

We simulated our strategy on AAPL on 2/24/2014 following a previous group's report of parameters. Start trading at 9:30am and end at 4:00pm.



**1** Negative  $P\&L \Rightarrow -12,908.762$  at 4pm

2 Inventory risk is controlled



- **1** We buy high and sell low  $\Rightarrow$  Negative spread
- 2 The optimal spread is a function of time

$$\delta^{a} + \delta^{b} = \underbrace{\gamma \sigma^{2}}_{constant} \left( T - t \right) + \underbrace{\frac{2}{\gamma} \ln \left( 1 + \frac{\gamma}{\kappa} \right)}_{constant}$$

Ideally, the spread changes in a more dynamic fashion, depending on other parameters such as time-varying volatility

**Optimal High-Frequency Market Making** 

Stanford University

| Market Making | Approach | Preliminary Results | Future Work |
|---------------|----------|---------------------|-------------|
|               |          |                     | •           |
|               |          |                     |             |
| Future Work   |          |                     |             |

## 1 Dynamic spread

- Volatility modeling
- Asymmetric spread
- 2 Parameter estimation
  - $\blacksquare$  Estimate  $\sigma$  and  $\kappa$  from historical data
  - Calibrate  $\gamma$
- 3 A different pricing model
  - Olivier Guéant, Charles-Albert Lehalle & Joaquín Fernandez-Tapia (2013) Dealing with the inventory risk: a solution to the market making problem

# Optimal High-Frequency Market Making

### Takahiro Fushimi, Christian González Rojas and Molly Herman

Stanford University

May 8, 2018

| Market Making | Approach | Preliminary Results | Future Work |
|---------------|----------|---------------------|-------------|
| ○             | 00       |                     | ○           |
| References    |          |                     |             |

- Marco Avellaneda & Sasha Stoikov (2008) High-frequency trading in a limit order book, *Quantitative Finance*, 8:3, 217-224, DOI: 10.1080/14697680701381228
- Olivier Guéant, Charles-Albert Lehalle & Joaquín Fernandez-Tapia (2013) Dealing with the inventory risk: a solution to the market making problem, *Mathematics and Financial Economics* 7:477. https://doi.org/10.1007/s11579-012-0087-0
- Xinyu Fan, Zheyuan Fan, Xiongfeng Li, Yao Li & Jingyuan Mo (2014) High Frequency Trading in Limit Order Book, MS&E448 Stanford University https://web.stanford.edu/class/msande448/2014/final/group3.pdf