Fundamental Signals Strategy

Daniel Cohn, Chase Navellier, Thomas Rogers

Background

The Fundamental Quality Anomaly

	Pane	el A: Long Sa	ample (U.S. ,	1956 - 2012)		Panel B: Broad Sample (Global, 1986 - 2012)					
_	QMJ Pr	ofitability	Safety	Growth	Payout	QMJ Pr	ofitability	Safety	Growth	Payout	
Excess Returns	0.40	0.27	0.23	0.12	0.31	0.38	0.34	0.19	0.02	0.38	
	(4.38)	(3.81)	(2.06)	(1.63)	(3.37)	(3.22)	(3.30)	(1.33)	(0.24)	(3.41)	
CAPM-alpha	0.55	0.33	0.42	0.08	0.46	0.52	0.43	0.34	0.02	0.49	
	(7.27)	(4.78)	(4.76)	(1.06)	(6.10)	(5.75)	(4.61)	(3.07)	(0.18)	(5.29)	
3-factor alpha	0.68	0.45	0.59	0.20	0.43	0.61	0.53	0.50	0.14	0.44	
	(11.10)	(7.82)	(8.68)	(3.32)	(6.86)	(7.68)	(6.11)	(5.40)	(1.92)	(5.17)	
4-factor alpha	0.66	0.53	0.57	0.38	0.21	0.45	0.49	0.39	0.29	0.19	
I	(10.20)	(8.71)	(7.97)	(6.13)	(3.43)	(5.50)	(5.34)	(4.00)	(3.91)	(2.26)	
MKT	-0.25	-0.11	-0.34	0.05	-0.20	-0.24	-0.16	-0.28	0.00	-0.18	
	(-17.02)	(-8.08)	(-20.77)	(3.35)	(-14.47)	(-14.36)	(-8.33)	(-13.74)	(-0.06)	(-10.50)	
SMB	-0.38	-0.21	-0.41	-0.05	-0.30	-0.33	-0.20	-0.31	-0.18	-0.23	
	(-17.50)	(-10.21)	(-17.00)	(-2.53)	(-14.82)	(-9.46)	(-5.07)	(-7.48)	(-5.62)	(-6.58)	
HML	-0.12	-0.28	-0.23	-0.44	0.39	-0.01	-0.16	-0.22	-0.38	0.36	
	(-5.03)	(-12.16)	(-8.50)	(-18.81)	(16.68)	(-0.31)	(-3.95)	(-5.23)	(-11.62)	(9.89)	
UMD	0.02	-0.07	0.01	-0.17	0.21	0.15	0.03	0.10	-0.14	0.24	
	(0.82)	(-3.80)	(0.64)	(-8.55)	(10.79)	(5.54)	(1.01)	(3.07)	(-5.64)	(8.57)	
Sharpe Ratio	0.58	0.51	0.27	0.22	0.45	0.62	0.63	0.26	0.05	0.66	
Information Ratio	1.46	1.25	1.14	0.88	0.49	1.16	1.13	0.84	0.83	0.48	
Adjusted R2	0.57	0.37	0.63	0.40	0.60	0.60	0.34	0.58	0.35	0.52	

Quality Minus Junk Asness, Frazzini, Pedersen (2013)

The Fundamental Quality Anomaly

	(1)	(2)	(3)	(4)	(5)	(6)
	Sharpe				Proba	Signal
	Ratio	eta	β^{-}	Skewness	$(r_t < -2\sigma)$	Persistence
Market - short rate	.47	1	1	13	.031	
Low vol	.43	015	0	06	.032	.99
Book to Market	.2	.029	.11	.035	.025	.98
Repurchasers	.55	.01	.04	053	.019	.96
Momentum	.43	041	1	007	.025	.88
Industry Leaders	.48	016	14	.008	.029	.15
Accruals	.77	.014	027	.027	.018	.95
ROE	.55	025	033	.021	.01	.97
Cash-Flows	1.2	016	055	.06	.021	.97
ROA	.46	025	054	.08	.01	.99

The Excess Returns of "Quality" Stocks: A Behavioral Anomaly Bouchaud, Cilberti, Landier, Simon, Thesmar (2016)

The Fundamental Quality Anomaly

Figure 1: Cumulative Return of a Quality Anomaly

The Excess Returns of "Quality" Stocks: A Behavioral Anomaly Bouchaud, Cilberti, Landier, Simon, Thesmar (2016)

Defining "Quality"

Quality = z(Profitabiliy + Growth + Safety + Payout)

Profitability/Growth	Safety	Payout
GPOA	BAB	EISS
ROE	IVOL	DISS
ROA	LEV	NPOP
CFOA	O-Score	
GMAR	Z-Score	
ACC	EVOL	

Quantitative Warren Buffet: Quality at a Reasonable Price (QARP)

- Quality Value vs. Quality / Value
- The return of quality stocks varies over time with very high correlation to the "quality premium" paid
- Sharpe ratios of 0.7 and 0.9 for the US and Global stock universes were achieved using QARP
- How to define value?

Our Project

Research Dataset

Home	Insert	Page Layo	ut Forn	nulas D	ata Re	view View						
- *	Cut	Calibri (Boo	dy) 🔹 12	• A	A- =	ð	<u>♀</u> ▼	📑 🤇 Wrap Te	ext	General		
aste 🗳	Format	BI	<u>U</u> •	• 🙆 • 🚪		- = = •	∎♦⊒	↔ Merge	& Center 🤻	\$ • %	5 7	•.0 • 00.
17 🛔	\times \checkmark	fx										
А	В	С	D	E	F	G	Н	I	J	к	L	
PERMNO	TICKER	date	year	RET	BM	debt to assets	ROA	ROCE	ROCE*BM	1-year RET	6-month	RET
13303	NL	199810	1998	-0.268	0.287	0.554	0.127	0.198	0.057	-0.176		-0.163
13303	NL	199811	1998	-0.062	0.333	0.485	0.14	0.222	0.074	0.035		-0.195
13303	NL	199812	1998	0.068	0.333	0.485	0.14	0.222	0.074	0.074		-0.211
13303	NL	199901	1999	-0.128	0.333	0.485	0.14	0.222	0.074	0.181		0.037
13303	NL	199902	1999	-0.217	0.474	0.341	0.16	0.269	0.128	0.509		0.253
13303	NL	199903	1999	-0.067	0.474	0.341	0.16	0.269	0.128	0.473		0.41
13303	NL	199904	1999	0.312	0.474	0.341	0.16	0.269	0.128	0.404		-0.015
13303	NL	199905	1999	-0.098	0.73	0.383	0.134	0.211	0.154	0.663		0.286
13303	NL	199906	1999	0.047	0.73	0.383	0.134	0.211	0.154	0.408		0.361
13303	NL	199907	1999	0.146	0.73	0.383	0.134	0.211	0.154	0.49		0.139
13303	NL	199908	1999	-0.054	0.624	0.356	0.132	0.207	0.129	0.985		0.204
13303	NL	199909	1999	0.05	0.624	0.356	0.132	0.207	0.129	0.729		0.045
13303	NL	199910	1999	-0.084	0.624	0.356	0.132	0.207	0.129	1.105		0.425
13303	NL	199911	1999	0.178	0.576	0.33	0.129	0.197	0.113	0.692		0.293
13303	NL	199912	1999	0.108	0.576	0.33	0.129	0.197	0.113	0.669		0.034
13303	NL	200001	2000	-0.041	0.576	0.33	0.129	0.197	0.113	0.494		0.308
13303	NL	200002	2000	0	0.491	0.286	0.132	0.2	0.098	0.419		0.648
13303	NL	200003	2000	-0.089	0.491	0.286	0.132	0.2	0.098	0.341		0.656
13303	NL	200004	2000	0.25	0.491	0.286	0.132	0.2	0.098	-0.042		0.477
13303	NL	200005	2000	0.069	0.561	0.304	0.148	0.22	0.123	-0.039		0.308
13303	NL	200006	2000	-0.114	0.561	0.304	0.148	0.22	0.123	-0.052		0.614
13303	NL	200007	2000	0.213	0.561	0.304	0.148	0.22	0.123	-0.145		0.142
13303	NL	200008	2000	0.26	0.571	0.287	0.167	0.249	0.142	-0.277		-0.139
13303	NL	200009	2000	-0.085	0.571	0.287	0.167	0.249	0.142	-0.256		-0.19
13303	NL	200010	2000	0.115	0.571	0.287	0.167	0.249	0.142	-0.428		-0.351
13303	NL	200011	2000	-0.053	0.413	0.272	0.186	0.287	0.119	-0.329		-0.266
13303	NL	200012	2000	0.093	0.413	0.272	0.186	0.287	0.119	-0.335		-0.413
13303	NL	200101	2001	-0.142	0.413	0.272	0.186	0.287	0.119	-0.282		-0.251
13303	NL	200102	2001	-0.05	0.404	0.237	0.188	0.295	0.119	-0.211		-0.16
13303	NL	200103	2001	-0.139	0.404	0.237	0.188	0.295	0.119	0.042		-0.082
13303	NL	200104	2001	-0.107	0.404	0.237	0.188	0.295	0.119	0.167		-0.118
13303	NL	200105	2001	0.072	0.596	0.247	0.196	0.309	0.184	0.18		-0.087
13303	NL	200106	2001	-0.126	0.596	0.247	0.196	0.309	0.184	0.158		0.132

The Quality Anomaly Illustrated

Finding the Best QARP Signal

- Exploring specific quality and value fundamentals that are most predictive of high returns (high regression coefficient and high R²)
- Combining them to create the most powerful overall signal

Quality = z(Profitabiliy + Growth + Safety + Payout) How to improve individual and category weighting?

Finding the Right Quality Metrics

Profitability/Growth	Safety	Payout
GPOA	BAB	EISS
ROE	IVOL	DISS
ROA	LEV	NPOP
CFOA	O-Score	
GMAR	Z-Score	
ACC	EVOL	

and many more...

Portfolio Construction

- Portfolio can be made market-neutral, equal parts long and short, or long-only
- Benchmark of comparison will vary depending on this choice
- Since quality predicts outperformance, we plan to create a weighted-average portfolio based on our QARP signal

```
om quantopian.algorithm import (
attach_pipeline,
  pipeline_output,
rom quantopian.pipeline import Pipeline
rom quantopian.pipeline.data import Fundamentals
rom quantopian.pipeline.filters import QTradableStocksUS
 Import Algorithm API functions
 om quantopian.algorithm import order_optimal_portfolio
   rt quantopian.optimize as opt
  initialize(context):
 context.day_count = 0
context.daily_message = "Day {}."
context.weekly_message = "Time to place some trades!"
  # Attach pipeline to algorithm
attach_pipeline(
       make_pipeline(),
        rebalance,
       date_rule=date_rules.every_day(),
        time_rule=time_rules.market_open()
  context.max_leverage = 1
  context.max_pos_size = 0.05
   context.max_turnover = 10
    nake_pipeline():
   base_universe = QTradableStocksUS()
ROIC = Fundamentals.roa.latest
   PB_ratio = Fundamentals.pb_ratio.latest
     \overline{RP} = ROIC/PB_ratio
      turn Pipeline(
                      o': PB_ratio,
                = base_universe
         QARP.notnull()
          (OARP > 0)
  before_trading_start(context, data):
    Get pipeline output and
  context.output = pipeline_output('data_pipe')
  rebalance(context, data):
    Create MaximizeAlpha objective using
  objective = opt.MaximizeAlpha(
     context.output.QARP
     Create position size constraint
   constrain_pos_size = opt.PositionConcentration.with_equal_bounds(
         context.max_pos_size,
         context.max_pos_size
     are roughly the same size
  dollar_neutral = opt.DollarNeutral()
   max_leverage = opt.MaxGrossExposure(context.max_leverage)
```

Quantopian backtesting pipeline

Separating Based on Industry

- Fundamentals also possess significant variability among industries
- Increased granularity should increase the signal power so long as we maintain a significant sample size
- Portfolio optimization amongst industry weightings would then yield a superior result