Anran Lu Huanzhong Xu Atharva Parulekar

Stanford University

May 8, 2018

Statistical Arbitrage

Cluster-based Strategy

Current Result and Future Work

Summary

• Review of classic Statistical Arbitrage

Summary

- Review of classic Statistical Arbitrage
- Main idea and steps of cluster-based strategy

Summary

- Review of classic Statistical Arbitrage
- Main idea and steps of cluster-based strategy
- Current result and future work

Review of Statistical Arbitrage

Figure: Stock chart of United Airline, Delta Airline and XTN

Statistical Arbitrage

Cluster-based Strategy

Current Result and Future Work

Main Idea of Pairs Trading

$$\frac{dP_t}{P_t} = \alpha dt + \beta \frac{dQ_t}{Q_t} + dX_t$$

Statistical Arbitrage

Cluster-based Strategy

Current Result and Future Work

Main Idea of Pairs Trading

Basic model: $\frac{dP_t}{P_t} = \alpha dt + \beta \frac{dQ_t}{Q_t} + dX_t$

"Pair": two stocks with similar characteristics

Current Result and Future Work

Main Idea of Pairs Trading

$$\frac{dP_t}{P_t} = \alpha dt + \beta \frac{dQ_t}{Q_t} + dX_t$$

- "Pair": two stocks with similar characteristics
 - α : negligible compared to dX_t

Current Result and Future Work

Main Idea of Pairs Trading

$$\frac{dP_t}{P_t} = \alpha dt + \beta \frac{dQ_t}{Q_t} + dX_t$$

- "Pair": two stocks with similar characteristics
 - α : negligible compared to dX_t
 - β : determined by regression

Current Result and Future Work

Main Idea of Pairs Trading

$$\frac{dP_t}{P_t} = \alpha dt + \beta \frac{dQ_t}{Q_t} + dX_t$$

- "Pair": two stocks with similar characteristics
 - α : negligible compared to dX_t
 - β : determined by regression
 - X_t: key part of the portfolio

Current Result and Future Work

Main Idea of Pairs Trading

$$\frac{dP_t}{P_t} = \alpha dt + \beta \frac{dQ_t}{Q_t} + dX_t$$

- "Pair": two stocks with similar characteristics
 - α : negligible compared to dX_t
 - β : determined by regression
 - X_t: key part of the portfolio
- "Generalized Pair": a stock and an ETF

Statistical Arbitrage

Cluster-based Strategy

Current Result and Future Work

Determine Portfolio by X_t

$$dX_t = \kappa(\mu - X_t)dt + \sigma dW_t$$

Cointegration: Ornstein — Uhlenbeck modelling of X_t

$$dX_t = \kappa(\mu - X_t)dt + \sigma dW_t$$

some implicit assumptions

$$dX_t = \kappa(\mu - X_t)dt + \sigma dW_t$$

- some implicit assumptions
- κ: mean reversion speed

$$dX_t = \kappa(\mu - X_t)dt + \sigma dW_t$$

- some implicit assumptions
- κ: mean reversion speed
- $X_t \sim \mathcal{N}(\mu, rac{\sigma^2}{2\kappa})$ at equilibrium

$$dX_t = \kappa(\mu - X_t)dt + \sigma dW_t$$

- some implicit assumptions
- κ: mean reversion speed
- $X_t \sim \mathcal{N}(\mu, \frac{\sigma^2}{2\kappa})$ at equilibrium
- $s = \frac{X_t E X_t}{Var X_t}$ determines long/short position

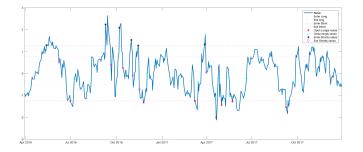


Figure: Apple-XLK pair opening and closing signals

Figure: Stock chart of United Airline, Delta Airline and XTN

Main idea and steps of cluster-based strategy

Statistical Arbitrage

Cluster-based Strategy

Current Result and Future Work

Motivation of our work

• Pairs with different "qualities"

- Pairs with different "qualities"
- Dynamically adjusting pairs based on real time factors

- Pairs with different "qualities"
- Dynamically adjusting pairs based on real time factors
- Non-stationary time series and cointegration

- Pairs with different "qualities"
- Dynamically adjusting pairs based on real time factors
- Non-stationary time series and cointegration

Cointegration: Here u_t is the stationary residual obtained after regressing non-stationary x_t and y_t which also have a unit root. We can use Dicky Fuller of two step Engel Granger to determine cointegration.

$$\mathbf{y}_t - \beta \mathbf{x}_t - \alpha = \mathbf{u}_t$$

- Pairs with different "qualities"
- Dynamically adjusting pairs based on real time factors
- Non-stationary time series and cointegration

Cointegration: Here u_t is the stationary residual obtained after regressing non-stationary x_t and y_t which also have a unit root. We can use Dicky Fuller of two step Engel Granger to determine cointegration.

$$\mathbf{y}_t - \beta \mathbf{x}_t - \alpha = \mathbf{u}_t$$

Steps of our work

Main idea: We run pairs trading on each stock-ETF pair giving rize to 5 key factors per stock-ETF pair. We calculate these factors for a stock with respect to all 6 ETFs.

Steps of our work

Main idea: We run pairs trading on each stock-ETF pair giving rize to 5 key factors per stock-ETF pair. We calculate these factors for a stock with respect to all 6 ETFs.

Key factors for pair:

- Residual s_t . (Non decorrelated $s_t = X_t m$)
- Mean Reversion Time $1/\kappa$
- Cointegration factors

Steps of our work

Main idea: We run pairs trading on each stock-ETF pair giving rize to 5 key factors per stock-ETF pair. We calculate these factors for a stock with respect to all 6 ETFs.

Key factors for pair:

- Residual s_t . (Non decorrelated $s_t = X_t m$)
- Mean Reversion Time $1/\kappa$
- Cointegration factors

Apply K-means clustering based on the key factors for a stock with respect to all ETFs (30 dim vector).

Current Result and Future Work

Current Result and Future Work $_{\odot \odot \odot \odot \odot}$

Visualization of Current Result

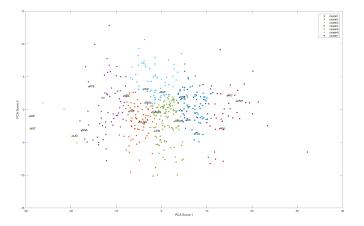
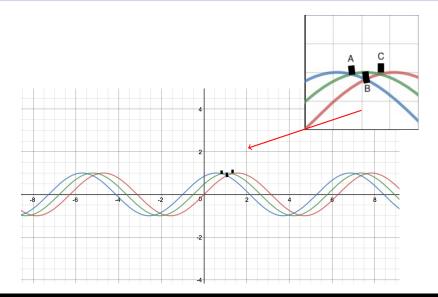


Figure: PCA scores based on K-means clustering (500 stocks)

General performance estimation and efficiency improvement

- General performance estimation and efficiency improvement
- Trade-off between cointegration and residual


- General performance estimation and efficiency improvement
- Trade-off between cointegration and residual
- Alternative Models

- General performance estimation and efficiency improvement
- Trade-off between cointegration and residual
- Alternative Models
 - Mean-reverting models to better describe X_t
 - EM for clustering

- General performance estimation and efficiency improvement
- Trade-off between cointegration and residual
- Alternative Models
 - Mean-reverting models to better describe X_t
 - EM for clustering
- Trade-off between trading frequency and transaction cost

Current Result and Future Work $_{\circ\circ\circ\circ\circ\circ}$

Selection of positions

Thank you!