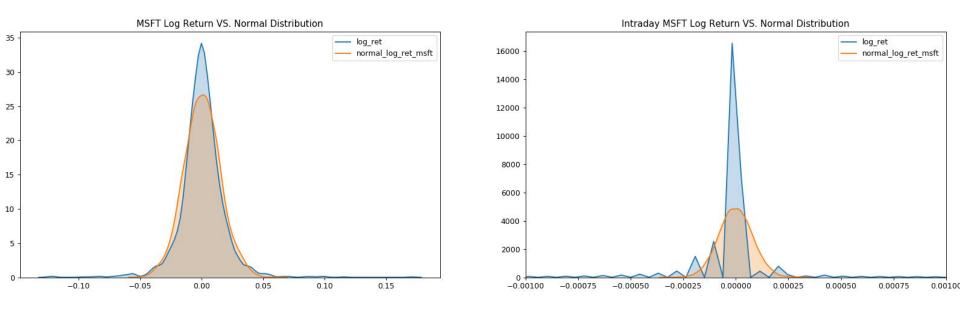
High Frequency Price Movement Strategy

Adam, Hujia, Samuel, Jorge

Limit Order Book [https://nms.kcl.ac.uk/rll/enrique-miranda/index.html]

High Frequency Price vs. Daily Price (MSFT)

- HF return significantly smaller mean and variance, but sharper peak and fatter tail
- [Left] Daily return: μ : 3.1e-4, σ : 0.0174 [right]: High frequency return: μ : 8.7e-08, σ : 7.9e-05

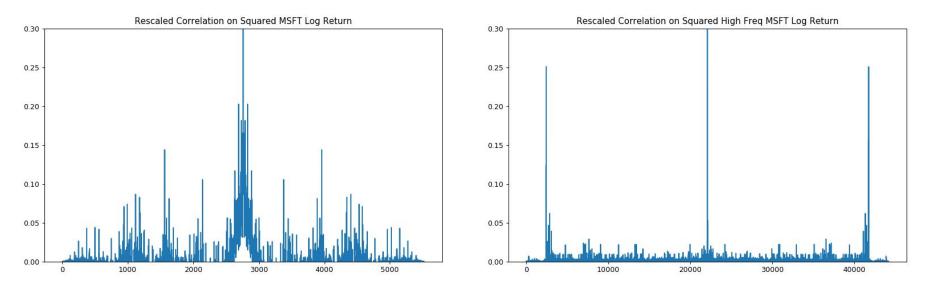


Autocorrelation

• [Left] Daily Price

[Right] High Frequency Price

• High frequency log return - **significantly less autocorrelation** - fails to meet strong autocorrelation assumption of time series models.



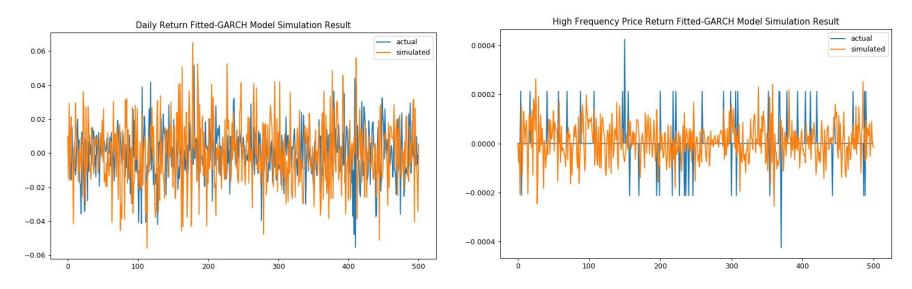
GARCH Simulation

$$\sigma_t^2 = \omega + lpha r_{t-1}^2 + eta \sigma_{t-1}^2$$

DOES NOT CONVERGE !!! :(

• params_daily = [6.36e-06, 0.05, 0.93]

params_intraday = [6.11e-10, 0.05, 0.85]



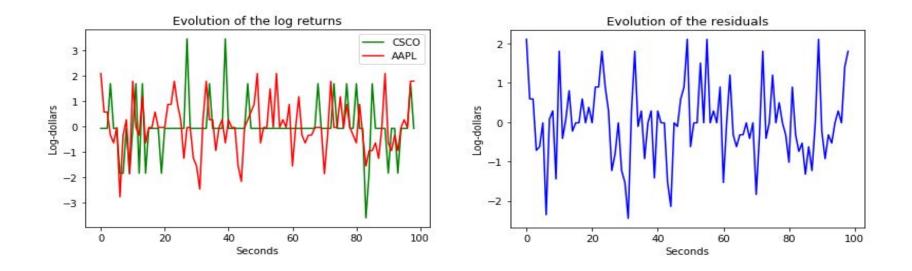
Conclusion: Time series models can still be fitted to high frequency data. **Cons:** (1) suboptimal parameters due to failure to converge. (2) can't model discrete / tick-size or zero price return.

Stat Arb: Pairs trading based on Avellaneda-Lee

- High-frequency pairs trading [1]
- Requires correlation between returns
- Three steps of the algorithm:
 - Identify pairs with high correlation
 - Regress the returns and model residuals
 - Identify temporary mispricings and execute trades

Measuring correlations

- Linearly **regress the midprice** returns of a pair of stocks
- Obtain residuals of the regression



Identifying mispricings

- Arbitrage opportunity if residuals "significantly" **diverge from 0**
- Residuals follow Ornstein-Uhlenbeck (OU) process:

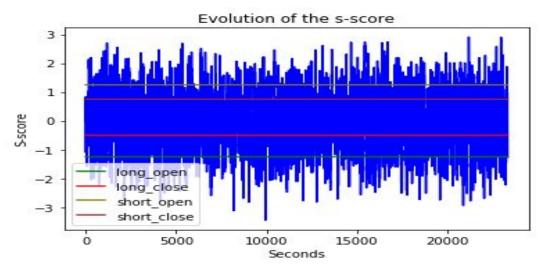
$$dr_t = \kappa (a - r_t)dt + \sigma dW_t$$

- Fit the parameters every second via an **AR(1) model**
- **Mispricing** if the last observation is far from the equilibrium

|S-score| = |(r_100 - mean(OU))/standard_deviation(OU)| > threshold

Execution of trades

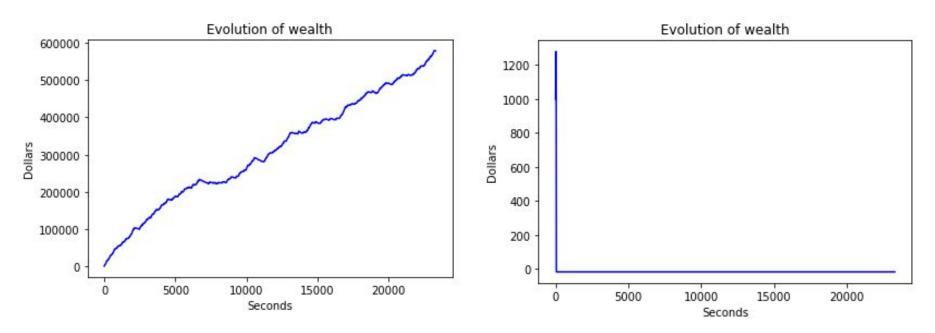
• Execute trades whenever empirical thresholds are crossed



• Limit the risk by trading few stocks in a dollar-neutral way and use of stop-loss

Results

AAPL vs CSCO



Next steps (1): Stochastic Control

- Now ad-hoc thresholds, requiring calibration.
- Idea [2]: think about the thresholds as stopping times maximizing an expected utility function and find them by solving a HJB equation.

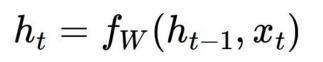
Eg: the criteria for exiting and entering a long position at time t observing r could be

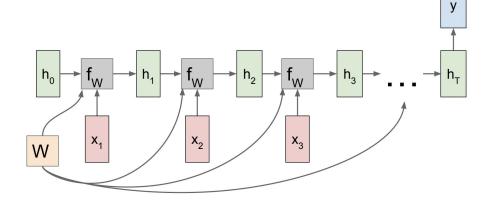
$$H(t,r) = \sup_{\tau} \mathbb{E}_{t,r}[e^{-\rho(\tau-t)}(r_{\tau}-c)] \quad G(t,r) = \sup_{\tau} \mathbb{E}_{t,r}[e^{-\rho(\tau-t)}(H(\tau,r)-r_{\tau}-c)]$$

• Next step: implement this and compare with the naive thresholds.

Next Steps (2): Predicting Residuals

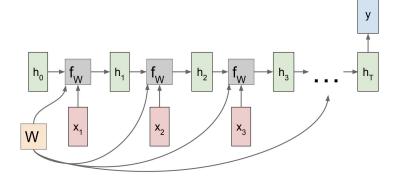
- Use other statistical and machine learning models to predict residuals
 - Other forms of ARIMA models
 - Recurrent Neural Network





Next Steps (3): Order Book with Deep Learning

 Create feature vectors (proposed by [3]) from the state of the order book at each timestep and formulate strategy using an RNN



Basic Set	Description(i = level index, n = 10)
$v_1 = \{P_i^{ask}, V_i^{ask}, P_i^{bid}, V_i^{bid}\}_{i=1}^n,$	price and volume (n levels)
	Description (in local in loc)
Time-insensitive Set	Description(i = level index)
$v_2 = \{(P_i^{ask} - P_i^{bid}), (P_i^{ask} + P_i^{bid})/2\}_{i=1}^n,$	bid-ask spreads and mid-prices
$v_3 = \{P_n^{ask} - P_1^{ask}, P_1^{bid} - P_n^{bid}, P_{i+1}^{ask} - P_i^{ask} , P_{i+1}^{bid} - P_i^{bid} \}_{i=1}^n,$	price differences
$v_4 = \{\frac{1}{n} \sum_{i=1}^{n} P_i^{ask}, \ \frac{1}{n} \sum_{i=1}^{n} P_i^{bid}, \ \frac{1}{n} \sum_{i=1}^{n} V_i^{ask}, \ \frac{1}{n} \sum_{i=1}^{n} V_i^{bid}\},$	mean prices and volumes

 $v_5 = \{\sum_{i=1}^{n} (P_i^{ask} - P_i^{bid}), \sum_{i=1}^{n} (V_i^{ask} - V_i^{bid})\},\$

Time-sensitive Set	Description(i = level index)
$v_6 = \{ dP_i^{ask}/dt, \ dP_i^{bid}/dt, \ dV_i^{ask}/dt, \ dV_i^{bid}/dt \}_{i=1}^n,$	price and volume derivatives
$v_7 = \{\lambda^{la}_{\Delta t}, \ \lambda^{lb}_{\Delta t}, \ \lambda^{ma}_{\Delta t}, \ \lambda^{mb}_{\Delta t}, \ \lambda^{ca}_{\Delta t}, \ \lambda^{cb}_{\Delta t} \ \}$	average intensity of each type
$v_8 = \{1_{\{\lambda_{\Delta t}^{la} > \lambda_{\Delta T}^{la}\}}, 1_{\{\lambda_{\Delta t}^{lb} > \lambda_{\Delta T}^{lb}\}}, 1_{\{\lambda_{\Delta t}^{ma} > \lambda_{\Delta T}^{ma}\}}, 1_{\{\lambda_{\Delta t}^{mb} > \lambda_{\Delta T}^{mb}\}}\},$	relative intensity indicators
$v_9=\{d\lambda^{ma}/dt,\ d\lambda^{lb}/dt,\ d\lambda^{mb}/dt,\ d\lambda^{la}/dt\},$	accelerations(market/limit)

accumulated differences

Summary

- Statistical Arbitrage using Limit Order Book Data shows initial promising results
- Next Steps:
 - Backtest using Thesys Simulator
 - Test with more pairs
 - Stochastic Control to set thresholds
 - Other methods for predicting residuals
 - RNN strategy

References

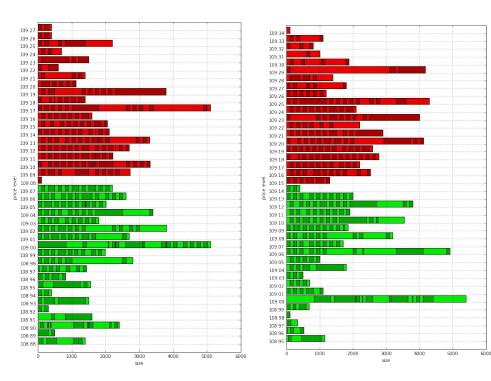
[1] Avellaneda, M., & Lee, J. H. (2010). *Statistical Arbitrage in the US Equities Market*. Quantitative Finance, 10(7), p.761-782.

[2] Cartea, A., Jaimungal, S., and Peñalva, J. (2015). *Algorithmic and high frequency trading*. Cambridge University Press, chapter 11.

[3] Kercheval, A. and Zhang, Y. Modeling high-frequency limit order book dynamics with support vector machines. University of Florida, 2013

High Frequency Data Visualization

- [Right] Thesys data visualization of order book for AAPL at 3pm and 3:01 pm on January 2nd, 2015
- [Below]



Limit Order Book (LOB)

- **Top of the Book** highest bid and the lowest ask orders
- **Price levels** several orders at the same price
- **Book depth** number of price levels available at a particular time in the book
- The LOB data gives traders insight into supply and demand of market microstructure, and short-term price movements