
Technical Analysis

Quan Chen, Reinaldo Perez, Hoormazd Rezaei, Haseeb Khan

June 11, 2018

Abstract

We build an automatic approach to technical pattern extraction by smoothing and kernel
regression in this paper. We use this method to most liquid 100 U.S. stocks to gauge the
effectiveness of technical analysis. Technical indicators can develop profitable strategy given
the comparison between the unconditional empirical distribution of daily stock returns and the
conditional distribution—conditioned on specific technical indicators. We also develop deep
learning models in order to extract appropriately the patterns within the data and tune for
them appropriately.

1 Introduction
Technical Analysis is defined as an analysis methodology for forecasting the direction of prices
through the study of past market data, primarily price and volume. Technical Analysis was the tool
of choice and evolved a fairly advanced methodology before quantitative and algebraic techniques
became the primary mechanism behind technical decision making [Nee99]. To some extent technical
analysis is known as unreliable. However, several paper suggest that technical analysis is effective
in obtaining valuable information from market prices despite its methods[NP84] [PW88]. Technical
analysts assume that the past prices can be used to forecast future returns.[FMT99].

2 Description of the Strategy
We aim to apply technical analysis to identify patterns in the time series of prices. By searching for
nonlinear patterns from noisy data, we recognize that some price movements are important while
others are merely white noise. We can identify signals by our eyes quickly and accurately while
computer could not until recently. However, smoothing estimators are well designed for this task
because they can identify nonlinear patterns by averaging out the noise. Therefore, we propose
using these estimators to replicate and assist human in extracting regularities in historical price
series [LMW00].

We provide a brief review of smoothing estimators and describe in detail the specific smooth-
ing estimator we use in our analysis: kernel regression. Our algorithm for automating technical
analysis is described in latter section.

2.1 Smoothing Estimators and Kernel Regression
We assume that prices {Pt} satisfy the following expression [Sim96]:

Pt = m(Xt) + εt (1)

where m(Xt) is an arbitrary fixed but unknown nonlinear function of a state variable Xt and εt is
white noise.

Above nonlinear relation can be estimated by smoothing, in which observational errors are re-
duced by averaging out the noise. Besides having some statistical optimality properties, smooth-
ing estimators are motivated by similarity to the way human identifies patterns from noisy data.

1

Therefore, they are ideal for our purposes. For any arbitrary x, a smoothing estimator of m(x)
may be expressed as:

mx =
1

T

T∑
t=1

ωt(x)Pt (2)

For the kernel regression estimator, the weight function ωt is constructed from a probability density
function K(x), also called a kernel:

K(x) ≥ 0,

∫
K(u)du = 1 (3)

By rescaling the kernel with respect to a parameter h, we can change its spread; that is, let

Kh(u) =
1

h
K(u/h),

∫
Kh(u)du = 1 (4)

For this paper, we shall use the most popular choice of kernel, the Gaussian kernel:

Kh(x) =
1

h
√
2π
e−x2/2h2

(5)

By choosing the appropriate h in the above equation, we can optimize the approximation of m().
We use cross-validation as the loss function for h. The cross validation function is given as:

CV (h) =
1

T

T∑
t=1

(Pt −mh,t)
2 (6)

The following figure is an example of stock price time series after applying the smoothing function.

Figure 1: Microsoft (MSFT) smoothing from January 1st 2016 through May 1st 2016, Note: The
smoothing estimation is not optimized.

2.2 Automating Technical Analysis
Given kernel estimators, we can now build an algorithm for automating the detection of technical
patterns. Our algorithm is shown below:

1. Define each technical pattern in terms of its geometric properties, for example, local extrema
maxima and minima.
2. Construct a kernel estimator of a given time series of prices so that its extrema can be deter-
mined numerically.
3. Analyze kernel estimator for occurrences of each technical pattern.

2

In Section 2.2.1, we propose definitions of 10 technical patterns based on their extrema. In Section
2.2.2, we describe a specific algorithm to identify technical patterns based on the local extrema of
price series using kernel regression estimators

2.2.1 Definition of Technical Patterns

We choose eight most poplar technical patterns: Head and Shoulders (HS) Inverse Head and Shoul-
ders (IHS) Broadening Top (BTOP) Broadening Bottom (BBOT) Triangle Top (TTOP) Triangle
Bottom (TBOT) Rectangle Top (RTOP) Rectangle Bottom (RBOT) We select these patterns be-
cause we want to exemplify smoothing techniques in automating technical analysis.

Consider the systematic component m() of a price history Ptand suppose we have identified n
local extrema, that is, the local maxima and minima, of Denote by E1, E2, ..., En the n extrema
and t1t2, ...tn dates on which these extrema occur. Then we have the following definitions.

Definition 1 (Head-and-Shoulders) Head-and-shoulders (HS) and inverted head-and-shoulders (IHS)
patterns are characterized by a sequence of five consecutive local extremaE1, E2, ..., E5such that

HS =


E1 is a maximum

E3 > E1, E3 > E5

E1 and E5 are within 1.5 percent of their average

E2 and E4 are within 1.5 percent of theiraverage,

IHS =


E1 is a maximum

E1 > E3, E5 > E3

E1 and E5 are within 1.5 percent of their average

E2 and E4 are within 1.5 percent of theiraverage,

Definition 2 (Broadening) Broadening tops (BTOP) and bottoms (BBOT) are characterized by a
sequence of five consecutive local extrema E1, E2, ..., E5 such that

BTOP =


E1 is a maximum

E5 > E3 > E1

E2 > E4

BBOT =


E1 is a minimum

E1 > E3 > E5

E4 > E2

Definition 3 (Triangle) Triangle tops (TTOP) and bottoms (TBOT) are characterized by a se-
quence of five consecutive local extrema E1, E2, ..., E5 such that

TTOP =


E1 is a maximum

E1 > E3 > E5

E4 > E2

TBOT =


E1 is a minimum

E5 > E3 > E1

E2 > E4

Definition 4 (Rectangle) Rectangle tops (RTOP) and bottoms (RBOT) are characterized by a

3

sequence of five consecutive local extrema E1, E2, ..., E5 such that

RTOP =


E1 is a maximum

Tops are within 0.75 percent of their average

Bottoms are within 0.75 percent of their average

Lowest top > highest bottom

RBOT =


E1 is a minimum

Tops are within 0.75 percent of their average

Bottoms are within 0.75 percent of their average

Lowest top > highest bottom

Definition 5 (Double Top and Bottom) Double tops (DTOP) and bottoms (DBOT) are char-
acterized by an initial local extremum E1 and subsequent local extrema Ea and Eb such that

Ea = sup{P ∗
tk

: t∗k > T ∗
1 . k = 2, 3, ...n} (7)

Eb = inf{P ∗
tk

: t∗k > T ∗
1 . k = 2, 3, ...n} (8)

2.2.2 The Identification Algorithm

Our algorithm begins with a sample of prices P1, ..., PT for which we fit kernel regressions, one for
each subsample or window from t to t+l+d-1, where t varies from 1 to T-l-d+1, and l and d are
fixed parameters whose purpose is explained below.

We fit kernel regressions to rolling windows of data to narrow our focus to patterns that are
within l+ d trading days which is the length of the window in our case. If we fit a single kernel re-
gression to the whole dataset, many patterns of different length may be identified, and it is difficult
to distinguish signal from noise in this scenario without adding constraints to patterns. Therefore,
the length of the window is fixed at l+ d, but kernel regressions are estimated for patterns in each
window. The parameter d assume that there may be a lag between the pattern realization and the
time of pattern recognition. We require that the final extremum that completes a pattern occurs
on day t + l + 1; hence d is the number of days following the completion of a pattern that must
pass before the pattern is recognized. In other words, the lag d makes sure that the conditional
returns are computed fully out-of-sample and without “look-ahead” bias.

Within each window, we estimate a kernel regression using the prices in that window, hence:

mh(τ) =

∑t+l+d−1
s=t Kh(τ − s)Ps∑t+l+d−1
s=t Kh(τ − s)

t = 1, ..., t− l − d+ 1 (9)

After we have identified all of the local extrema in the window [t, t+ l+ d− 1] , we can proceed to
extract different technical patterns using the definitions above. Then we repeat the process for the
next window [t + 1, t + l + d] and continues until the end of the sample is reached at the window
[T − l − d+ 1, T].

3 Data
We use Quantopian dataset of stock prices. The data is cleaned and the close price is adjusted for
corporate actions. Using the platform we are able to select based on liquidity. Selection based on
liquidity is to maximize pattern detection.

We collect interest rate data from Federal Reserve Economic Data 1 in order to calculate excess
returns.

1Federal Reserve Economic Data (FRED)

4

https://fred.stlouisfed.org/

3.1 Training Set
We use data from 100 most liquid stocks from 2002-1-1 through 2010-12-31 as our training data.
We compute returns based on waiting and holding period after we have identified technical pat-
terns applying the automated identification algorithm.

3.2 Test Set
We choose out-of-sample data from the 100 and 1000 most liquid stocks from 2011-1-1 through
2017-12-31. Using optimized parameters, we compute return distribution for the 4 outperforming
patterns.

4 Method

4.1 Training
Let us define the following parameters:

• Waiting Period, w: The amount we wait after pattern recognition before taking a position.

• Holding Period h: The amount we hold our position after entering one.

Sharpe ratio is defined to be the mean of returns over standard deviation of them (a proxy for
volatility). Here, we use a modified version of Sharpe ratio to pick best performing patterns. Our
Sharpe ratio differs from an actual one, by that it only takes into accounts returns after pattern
recognition. However, managing a portfolio on patterns, one may have an excess return of zero if
none is observed. It is worth mentioning that all analysis is done on excess returns. After pattern
recognition, we go long on bullish patterns, and we short the bearish ones.

During the training we take the following steps:

• Firstly, we run the kernel regression on the data in order to remove noise. Smoothing is
optimized to minimize cross-validation loss.

• Secondly, we locate extrema on smoothed prices, and consequently on actual prices.

• Next, we detect patterns for each stock and calculate the returns for different combinations
of waiting period, w, and holding period, h. For each stock, we save the best performing
combination and its return.

• Finally, we choose best performing combination among all stocks.

4.2 Testing
Based on our internal version of Sharpe ratio, we pick patterns with a significantly high Sharpe ratio
(more than 2) and test them out-of-sample. If patterns are able to achieve the same performance
out-of-sample, we include them in our portfolio construction.

5 Results

5.1 Parameters
Results of optimal combinations of w and h are provided below.

5

Figure 2: Optimized waiting and holding periods

5.2 Best Performing Patterns
By using the optimized parameters, we compute the return distribution for all 8 patterns. The
results show that Broadening Top (BTOP), Inverse Head and Shoulders (IHS), Broadening Bottom
(BBOT), Head and Shoulders (HS) are the 4 most profitable patterns.

Figure 3: training IHS, Mean: 0.003169
inside SD: 0.013959 SR: 3.6040

Figure 4: training BBOT, Mean: 0.006803
inside SD: 0.023195 SR: 4.6563

Figure 5: training RBOT, Mean: 0.000224
inside SD: 0.007862 SR: 0.4524

Figure 6: training TBOT, Mean: 0.002390
inside SD: 0.021694 SR:1.7494

Figure 7: training BTOP, Mean: 0.006174
inside SD: 0.020361 SR: 4.6564

Figure 8: training HS, Mean: 0.002715
inside SD: 0.014904 SR: 2.8912

6

Figure 9: training RTOP, Mean: 0.000930
inside SD: 0.010806 SR: 0.45250

Figure 10: training TTOP, Mean: 0.001341
inside SD: 0.026575 SR: 0.8010

5.3 Out-of-sample Data
Testing the 4 best performing patterns on out-of-sample data, we are able to achieve the same
performance. Results below strengthen our choice of patterns.

Figure 11: 100 HS, Mean: 0.001825
inside SD: .0.011382 SR: 2.5466

Figure 12: 100 IHS, Mean: 0.002277
inside SD: 0.010785 SR: 3.3525

Figure 13: 100 BBOT, Mean: 0.003049
inside SD: 0.013959 SR: 5.5683

Figure 14: 100 BTOP, Mean: 0.002919 SD:
0.013236 SR: 3.99147

Figure 15: 1000 HS, Mean:0.002086
inside SD: .0.012589 SR: 2.6305

Figure 16: 1000 IHS, Mean: 0.002583
inside SD: .0.012463 SR: 3.2902

7

Figure 17: 1000 BBOT, Mean: 0.006314
inside SD: 0.020119 SR: 4.9824

Figure 18: 100 BTOP, Mean: 0.004089
inside SD: 0.015237 SR: 4.2604

5.4 Portfolio Construction
As a result of train and test process, we pick the 4 following patterns: Broadening Top (BTOP),
Inverse Head and Shoulders (IHS), Broadening Bottom (BBOT), and Head and Shoulders (HS).

We construct our portfolio as described below:

• If patterns are observed at day t, we wait according to optimal w corresponding to each
observed pattern. We then take position and hold it for optimal h. If multiple patterns are
observed, we take the naive strategy of taking equal positions in each pattern (1n for each
pattern, for n bullish patterns).

• If no pattern is observed, our excess return for the future days related on day t will equal
zero.

Following above strategy, results are as below for the 4 best patterns.

BBOT 4.247
BTOP 4.3.215
IHS 3.413
HS 2.538

6 Discussion
As expected by the definition of technical patterns, and potentially as a consequence of survivorship
bias, it is found that the best holding period for patterns is 1 day. Training over 9 years of data
however, we find that only 4 patterns are able to generate high Sharpe ratios. The results hold
for out-of-sample data as well. Constructing our portfolio on patterns BBOT, BTOP, IHS, and
HS, we were able to achieve real Sharpe ratios of 4.247, 3.215, 3.413, and 2.538, respectively, in
the out-of-sample data. These ratios were obtained by calculating the mean of returns for each
trading day where at least one observation of a pattern occurred. We also included zero returns
for the trading days where no observations occurred. In total, there were 1761 trading days in the
out-of-sample data. From these data we derived the Sharpe Ration for each pattern. The high real
Sharpe ratios in the out-of-sample data are surprisingly high. We expect outliers to be responsible,
however, due to shortage of time we are not able fully study the issue. All being said, it is obvious
that the 4 technical patterns, based on which we construct our portfolio, have significant predictive
power.

7 Conclusion and Future Steps
We believe the following future steps may be beneficial to our study:

• Study how patterns may act in different market environments. For example, it can be
analyzed which patterns occur more in volatile markets, and how we can adapt our portfolio
construction to way in can take those behaviors into account.

• In our analysis, whenever multiple patterns are observed, we take the naive strategy. More
approaches can be studies and compared here.

8

• Moreover, patterns can be studies among various categories of assets; financial sector and
technology sector to name but two.

8 Deep Learning
Our paper proposes a deep learning method for reflexive and baseline market forces using a causal
aspect dependent stock market price prediction. Our baseline idea is to let an extremely dense
neural net extract a plethora of features from a daily priceline index of one stock. Then, after
this data is normalized within given price values, the weights in the network are tensorized with
respect to the normalized price feature values. In the second phase, we separate short term features
from long term influences on stock pricing models, considering Bayesian semiparametric effects on
Markov processes. Applying this technique to daily split adjusted company price data, experimen-
tal results show that we can achieve 61% correct prediction of the next day’s closing price, with
4% MOE under nominal market circumstances for most companies comprising the S&P 500 index.

We modeled the solution using the TensorFlowtm deep learning Python framework based on 24-
layer LSTM model. Our results demonstrate how a deep learning model trained on pricing data
from daily open, close, high, low, and volume traded information can provide a valuable signal to
an investment decision maker. Below are some basic results of our model for 25 companies using
data for 3 years.

Figure 19: Training and Test Results with 10 stocks, using LSTM-24L

8.1 Neural Network LSTM Model
In order to predict appropriately the patterns within pricing and volumetric information, there is
a need for advanced multivariate methods with a great degree of parametric and hyper-parametric
flexibility that can also efficiently extract the underlying source patterns within the data and tune
for them appropriately. Deep and Very Deep LSTM models are able to achieve this to a greater
degree because of their ability to correctly perform the tensor decomposition necessary in order to
identify, classify and correlate chronological data sequences. It must however, be borne in mind
that deeper networks are much harder to train and are even harder to fine-tune. In order to train a
Deep LSTM with real time 5 factor-pricing, one must trade volume information and incrementally
adjust the model daily using the information loss-factor in preprocessing the data with a smoothing
kernel - which we discussed earlier -or the data needs to be minimized. Because of this constraint,
a smoothing function cannot be applied to the data in a manner similar to our regular technical
analysis methodology. Additionally, the In-Network information loss factor has to be kept at a
minimum, therefore, attempts to correct over-fitting by incorporating L1 and L2 dropout layers
cannot be done. Furthermore, any attempts at incorporating max-pooling layers will lead to a loss
in data resolution, and thus could not be used.

9

Because the task of tuning a very large number of parameters is time consuming, we tried a
number of different optimization techniques, the results of which are displayed in the figure below.

Figure 20: Performances of Different Learning Algorithms

For out activation function after we tried a number of different approaches we proposed and
successfully utilized “scaled exponential linear units” (SELUs) to make our Deep LSTM network
as self-normalizing. The SELU activation function is given by:

SELU(x) = λτ

{
x if x > 0

aex − a if x < 0

Using SELU we were able to dramatically improve the accuracy and precision of our model as
well as reduce the degree of over fitting to the training data. The figure below displays the results
of the 30 Layer SNN added to the LSTM architecture compared to other setups that we tested
when iterated over the same large 20 year datasets. In Looking at the results we observe that a
Deep LSTM architecture employing multiple SELU layers provides the best results for our model.

Figure 21: Performance of SNN Layers

We however observed limitations in the network that made it very sensitive to bad data. This
essentially meant that the network data has to be cleaned meticulously before any attempts can
be made to utilize the potential of the architecture.

10

8.2 Secondary Bayesian Neural Network for Ranging Price Field
Our model served its purpose as a quintessential proof of concept and is only the proverbial peak
of the iceberg. It served as a benchmark for proving that it would be possible to structure a
Deep Neural Net employing LSTM architecture with multiple SNN layers fully connected to RNN
layers in order to serve as hyper-feature extractors, and that such an architecture can yield semi-
dependable results in a test environments. Our hope for the future is to add a secondary BNN
(Bayesian Neural Network) to the architecture in order to generate a skewed distribution for the
next day’s predicted price.

9 Contribution
Hoormazd, Reinaldo, and Quan worked on replication of Lo’s paper, and portfolio construction
based on it. Haseeb was responsible for Deep Learning section.

References
[FMT99] Colin Fyfe, John Paul Marney, and Heather F.e. Tarbert. Technical analysis versus

market efficiency - a genetic programming approach. Applied Financial Economics,
9(2):183–191, 1999.

[LMW00] Andrew Lo, Harry Mamaysky, and Jiang Wang. Foundations of technical analysis:
Computational algorithms, statistical inference, and empirical implementation. 2000.

[Nee99] Christopher J. Neely. Using genetic algorithms to find technical trading rules: A com-
ment on risk adjustment. SSRN Electronic Journal, 1999.

[NP84] Salih N. Neftci and Andrew J. Policano. Can chartists outperform the market? market
efficiency tests for “technical analysis”. Journal of Futures Markets, 4(4):465–478, 1984.

[PW88] Stephen W. Pruitt and Richard E. White. The crisma trading system. The Journal of
Portfolio Management, 14(3):55–58, 1988.

[Sim96] Jeffrey S. Simonoff. Further applications of smoothing. Springer Series in Statistics
Smoothing Methods in Statistics, page 252–274, 1996.

11

	Introduction
	Description of the Strategy
	Smoothing Estimators and Kernel Regression
	Automating Technical Analysis
	Definition of Technical Patterns
	The Identification Algorithm

	Data
	Training Set
	Test Set

	Method
	Training
	Testing

	Results
	Parameters
	Best Performing Patterns
	Out-of-sample Data
	Portfolio Construction

	Discussion
	Conclusion and Future Steps
	Deep Learning
	Neural Network LSTM Model
	Secondary Bayesian Neural Network for Ranging Price Field

	Contribution

