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Stanford University, ICME

mrivet, marcthib, mtrean at stanford.edu

Abstract— This article presents a way to use cross-section
correlation of returns among US equity to design a return-to-
normal mid-frequency trading signal, the Cross-Section Perfor-
mance Reversion.

Including risk factors can significantly improve ”return-to-
normal” trading strategies, namely simple Mean Reversion and
the Cross-Section Performance Reversion. It also ensures signal
stability and better Sharpe ratios.

This strategy exhibits a strong value potential. Even if the
economic rationale behind the two strategies is comparable, the
two signals are perfectly uncorrelated, which is of particular
interest in a context where the Mean-Reversion is widely used
in the industry.

This cross-section strategy displays a strong sensibility to
the condition numbers of the correlation matrices handled. A
framework is provided to avoid numerical instabilities in these
cases.

I. INTRODUCTION
Mean-reversion is a widely used trading strategy in many

various ways. The main idea behind it is a bet on a ”return
to normal” behaviour of the stocks. The normal behaviour
can be the long-term price average, but can also come from
a more elaborate model.

Taking advantage of the cross-correlation between stocks
to design the ”normal” behaviour of a stock is a natural
improvement of the classical Mean-Reversion. Modeling an
accurate covariance matrix is a challenging problem, as it
is known that the plain historical covariance is instable and
inaccurate.

This article models the covariance between stocks using
a Constant-Conditional-Correlation-GARCH inspired of [1].
This model is an interesting trade off between accuracy and
computational speed.

The above model allows us to have a prediction of the
returns of a stock, conditioned on the market’s performance.
The signal is built taking into account both the predicted
returns and the recent deviation of a stock from the pre-
diction. This enables a return-to-normal signal, while taking
into account the fact than some stocks tend to perform better
than others on average.

The portfolio is built after hedging risk factors, which are
common drivers in the performance of stocks. This makes
sure that the performance of the strategy relies solely on
the predictive power of the signal and not only on the
performance of other outside factors. It also stabilizes the
signal and tends to lower the drawdowns.

Numerical instabilities and computational problems are of
crucial importance in the construction of the signal, and this
paper will detail methods used to reduce the signal generation
time, and to improve the stability of the strategy.

Fig. 1. Evolution of the cumulative performances of the AAPL (red)
and MSFT (yellow) tickers over two months; evolution of the performance
of AAPL conditional on MSFT (green) with 38%- and 68%-confidence
intervals. The hypothesis is that the performance of AAPL (red) reverts to
its “inferred” performance (green).

II. SIGNAL GENERATION ON CROSS-SECTIONAL
STOCKS CORRELATION

Mean reversion assumption is that substantial price moves
away from their average will be followed by a reversion to
them. This hypothesis can be broadened by stating that a
divergence from a model will be followed by a return to the
normal modeled behavior. Stock returns here are modeled
by a GARCH model and the cross-section signal is based on
their residuals.

A. Stock returns model: correlated GARCH

The first step of the analysis is to design a single-stock
time series model. This model will be individually fitted on
the past time series of each stock. The goal is to provide
a baseline model to each stock, in order to have a way of
expressing daily ”innovations” as divergences to a model.

A useful quantity to be modeled for each stock is its log-
return series. If the price of a stock at time t is Pt, then the
log-returns are defined by

rt = log
Pt+1

Pt
.

Each series of individual log-returns is modeled with a
GARCH(1, 1) model. Each series alone has a mean µi
perturbed by a noise εt,i. The scale of these innovations, σt,
follows an AutoRegressive Moving Average model (ARMA)
model. The main contribution here is to incorporate a cor-
relation matrix between the normalized innovations, R, in
order to take the market structure into account.



returns: rt,i = µi + εt,i

innovations: εt ∼ σt.N(0, R)

volatilities: σ2
t,i = wi + αiε

2
t−1,i + βiσ

2
t−1,i

The individual GARCH models are fitted using 200 days
of past data. Once this is done, the unscaled innovations εt,i
are extracted. The matrix R is then extracted as the correla-
tion matrix between these quantities. This fitting procedure
of the coefficients of GARCH regressions and the R matrix
is repeated on a monthly basis. The procedure gives access,
everyday, to an estimate of εt and σt, and a prediction of
σt+1.

B. Trading signal: Cross-Section Performance Reversion

The goal of the predictive signal presented here is to in-
corporate the performance of a stock compared to the market
environment it lies in. The first step of such an analysis is
to design a model to quantify this relative performance.

The correlated GARCH model developed previously en-
ables closed and intuitive formulas for the conditional dis-
tribution of the returns of one stock knowing the others,
as the conditioning of a normal vector. The conditional
return of stock i, knowing the returns of other stocks J =
{1, ..., n}\{i} can be expressed as

rt,i|rt,J ∼ N(µ̄, σ̄2)

where

{
µ̄ = µi + σt,iRi,J .R

−1
J .

(rt,J−µJ )
σt,J

σ̄2 = σ2
t,i

(
1−Ri,J .R−1

J,J .R
T
i,J

) .

In the previous formula, subscripting vectors and ma-
trices by i corresponds to extracting the i-th term; while
subscripting by J corresponds to extracting all but the i-th
term. The conditional mean and variance of the i-th stock
return can be expressed given the performance of other
stocks, rt,J , and sub-matrices of the correlation matrix R. It
can be computed at each time step, even though operations
such as the inversion of RJ,J can be computationally time-
consuming. This aspect is explored in Section IV-B.

This model provides with a ”baseline”, a model believed
to be representative of the true value of a stock, and it
is computed everyday for each stock, taking into account
the performance of every other stock. The ensuing trading
strategy is to aim at a portfolio which bets on a subsequent
return to this ”baseline”. The price being expected based
on this model gives an expected return at time t + 1. This
expected return will be the trading signal of the strategy

αi,t = µ̄+ (µ̄− rt,i)

and can be decomposed in two terms: µ̄ is the baseline
performance of the stock under the model as predicted above,
while µ̄ − rt,i is the term of reversion to the model. This
formula is equivalent to a reversion-to-model in price space.

This means that if the stock under-performed compared to
the model, the portfolio’s position will be long the stock;

Fig. 2. Depiction of the model’s returns, realized returns, and subsequent
signal. In green, cumulative returns of the studied stock under its baseline
model, with daily return µ̄. In red, cumulative returns of the stock, being
r on the first day. In order for it to revert to the baseline, the next day’s
return is expected to be 2µ̄− r.

while if the stock over-performed, comparatively to the
model, then the portfolio will have to be short the stock.
The value of the position is given by the algebraic difference
between the stock’s actual performance and its performance
in the model. Figure 2 gives a graphical explanation of
the interaction between the baseline model and the realized
performance.

A clear parallel appears between the trading signal de-
veloped here and a simple mean-reversion trading strategy.
Both are based on a model fitted on past data (in the case of
mean reversion, the rolling mean of the stock’s price; in this
case the performance of the stock conditional to the other
stocks’ recent performance). Both produce portfolios which
represent the belief that the market will revert back to the
model, that is a return to the normal or expected behavior.

C. Netting the market

The primary driver to most stocks’ performance can be
explained solely by the overall market’s performance. Con-
sequently, the correlation between raw stock returns will
mainly capture the relationship between their systematic
parts.

Fig. 3. Correlation matrix of raw returns

Figure 3 shows the correlation matrix of the daily returns



of a sample of stocks. One can see that they for the most
part fluctuate around 0.3, which is the average correlation of
a stock to the others (0.245). This observation means that
the information contained in this matrix is, in substance, the
impact of the market on other stocks. Therefore, it gives little
clue on the underlying correlation structure of the stocks.
However, the interest here to build our signal lies in the
non-systematic part of our returns.

In order to capture the signal in the returns that is
independent of the market, the decomposition is assumed
to be

ri(t) = βi ·RM (t) + εi(t)

where RM are market returns, ri are returns of stock i
and βi is the sensitivity to the market of this stock. SPY is
used as a proxy to the US market price, so that RM (t) are
the SPY’s daily returns. The value of interest here are the
residuals, εi which are used to compute a new correlation
matrix R. This part is crucial to build the signal described
above, as it highly relies on the validity matrix. In section
V below are presented results with and without removing
the systematic part of returns. Figure 4 shows the new
correlation matrix, which presents an average correlation of
0.053. The information looks more balanced, and the stocks
exhibit different relationships: correlations, decorrelations,
and anticorrelations.

Fig. 4. Correlation matrix of residuals returns

III. INTEGRATION OF FACTOR RISKS AND
BETA-RESIDUALS

To construct the portfolio based on the computed signal,
several risk factors have to been taken into account. Ideally,
one wants its position on the market to be null on those
factors. After having built them, sensitivities from each stock
to these factors have to be computed.

A. Computing sensitivities to factors

Finding an equivalent of SPY for the market as proxy
for other factors allows to follow the same method as for the
market residuals to compute the sensitivities. As an example,
the volatility factor captures the difference of performance
between highly volatile stocks and low volatility stocks. One
can build it by computing historical volatility, going long

the first decile and short the last one. These methods gives
historical “returns” F j(t) of each factor j.

After computing all the factors representing the risks to be
managed in the portfolio construction process, a multivariate
linear regression is performed to obtain each stock’s daily
sensitivity to factors. This regression is fitted daily, in a
rolling manner, including a year of past data. Returns can
thus be described as:

ri(t) =
∑
j

βji · F
j(t) + εi(t)

B. Hedging portfolios to the considered factors

The goal of portfolio construction is to build a market
position (wi) which is as close as possible to a given input
signal (αi), while meeting a set of constraints.

A basic constraint is to have a flat position, that is having a
long position equal to the short position. It can be expressed
by imposing

∑
i wi = 0. An extra constraint is to have a

null market exposure, that is making sure that the sum of the
positions’ sensitivities to the market is zero:

∑
i wi.β

M
i = 0.

This procedure actually stands for any risk factor, so that the
considered constraint is

∑
i wi.β

j
i for any risk factor j.

In order for the hedging constraints to be met, and in order
to keep a position that is consistent with the signal, the pro-
cedure that will be used here is projecting the signal α on the
linear space orthogonal to the risk factors sensitivity vectors
βj . This operation can be performed easily by performing a
simple linear regression and extracting its residuals.

C. Impact of risk hedging on returns

Basic mean reverting strategies have generally low and
steady returns with some big drawdowns along the way. Risk
managing the portfolio allows to cut the tails and reduce the
variance of returns.

Fig. 5. Distribution of the strategy’s returns without (blue) and with
(orange) risk management, on a logarithmic scale. Risk hedging produces
returns with much lighter tails.

Figure 5 shows that the strategy returns tend to gather
around the mean when risk factors are taking into account,
and cut the tails. Hence, returns are more stable and the
strategy has a higher Sharpe ratio. This analysis is performed
in Section V-D.

IV. ALGORITHM IMPLEMENTATION

The implementation of the preceding algorithm raised
several numerical problems. The bad conditioning of the cor-
relation matrices, the extensive number of matrix inversions



to be performed, and the instability of the GARCH fit were
the three main concerns in the creation of the above signal.

A. Numerical instability

The raw correlation matrix of stocks returns happened to
be badly conditioned, for several reasons. First, some stocks
were listed with different tickers, and had very similar be-
haviors, leading to an almost non-invertible matrix. Secondly,
when the market is not removed, the stocks are highly driven
by a common component, leading to similar performances,
and thus a badly conditioned matrix. The conditioned number
obtained on the correlation of the most liquid 200 stocks is
κ = 3.78 103.

In order to cope with this instability, two methods have
been used. First, using a relaxed version of the Moore-
Penrose pseudo-inverse in the estimation of the conditional
mean of the stocks reduced the instability. This pseudo-
inverse drops the smallest eigenvalues, thus forcing the
condition number to be smaller than a target value. This
operation does not lose information because the smallest
eigenvalues of the correlation matrix primarily encode redun-
dant stocks. Secondly, removing the market before generating
the signal was of great use, as it reduced the impact of
the common driver, made the stocks less similar, and thus
increased the condition number of the correlation matrix.
These two techniques enabled the reducing of the condition
number of the used matrix to κ = 8.30 101.

B. Computation efficiency

At each estimation step, the algorithm needs to invert
nstocks sub-matrices of the correlation matrix R. These sub-
matrices are defined by removing row i and column i from
R, for every stock i ∈ [nstocks]. All of those inversions are
computationally heavy, as the number of stocks can get very
high. Moreover, those inversions are very similar one to the
other, since the nstocks matrices to invert are sub-matrices
from the same one.

The approach taken here to ensure computational effi-
ciency and to avoid redundant computations is using the
Woodbury matrix identity. By carefully choosing matrices
U (n× 2) and V (2×n), one can easily view the mentioned
sub-matrices as rank-two perturbation of the full matrix,
removing all elements but the diagonal, in a column and
the corresponding row

1 0 . . . 0
0
... RJ,J
0

 = R+ U.V

The Woodbury identity states that (R+U.V )−1 = R−1−
R−1U(I+V R−1U)−1V R−1, so that computing the inverse
of RJ,J only requires a few matrix products and a rank-two
matrix inversion, with as an overhead the one-time inversion
of matrix R.

This implementation speeds up the time of this operation
by a factor 18.3, when working with nstocks = 500, which

greatly reduces the bottleneck of the algorithm. The impact
of this method is further explored in Appendix I.

C. Stabilization of the GARCH

The GARCH fitting procedure can produce very different
results, as the values of α and β are linked, and have to a
certain extent the same role in the dynamics of the process.
Thus, the value of the last volatility σt is unstable, and leads
to very different estimation from one day to the next.

In order to fight this problem, the GARCH fit is not
performed every day, but monthly, leading to stable values of
α and β. Moreover, the last variance of each stock is updated
at each time step using the autoregression formula. This
leads to a better computation time, and reduces the changes
between consecutive days. These techniques of stabilization
of the computation of the volatility enabled more reliable
and steady signals.

D. Data instability

Another source of instability is the quality of the data. Lots
of stocks present large jumps, holes and bugs. This leads to
bad estimations for the GARCH, and for the correlations.

In order to solve this problem, a stock with jumps, holes
or bugs in the last past n = 100 days is not allowed to pass
the filter, and thus cannot affect the correct fits. When a new
stock passed the filter, the GARCH is evaluated only on this
stock, and the correlation with this stock is computed. When
a stock disappears, it is only removed from the correlation
matrix.

V. RESULTS
A. Universe

The universe that is being considered is the 100 most
traded stocks in the United States. This offers good guar-
anties of liquidity and data availability.

B. Baseline

The baseline that will be built upon and compared to
is the basic framework of the Cross-Section Performance
Reversion, using the correlation matrix of raw returns, and
without hedging the portfolio.

As expected in Section II-C, the signal is not strong and
has very low performance, with a Sharpe ratio of 0.263.
Figure 6 shows the behavior of the unhedged portfolio
with this signal. This shows that correctly estimating the
correlation matrix is central in the signal construction.

Fig. 6. Portfolio performance with baseline signal, trading daily between
2011 and 2017. Returns are highly unstable, and can be interpreted as noise.
Sharpe = 0.263.



C. Netting the market on the signal

Netting out the market before generating the signal im-
proved significantly the performance of the strategy. It led
to more relevant estimations of the true correlations between
stocks. Moreover, it significantly improves the conditioning
of the correlation matrix, since the stocks’ returns have been
made independent from a common driving factor, the market.

The results are significantly better, as figure 7 shows. The
Sharpe ratio is 0.972.

Fig. 7. Portfolio performance with market fit signal. Returns are steadier
are more reliably positive. Sharpe = 0.972.

Another signal can be extracted from the above method:
the stocks can be ranked according to the value of the signal
computed as above, and this rank becomes the signal on
which to trade. This methods helps removing outliers, and is
a safety test of the robustness of the signal. This new signal
performs comparably to the original one, with a Sharpe ratio
of 0.914.

D. Hedging risk factors in the portfolio construction

Hedging risk is the final step in the portfolio construction.
It helps removing the common drivers in the market, and
trade the real alpha present in the signal. This provides a
large improvement in the performance of the strategy. Table
II demonstrates the impact of hedging the market and the
volatility. The Sharpe ratio reaches 1.278 after the hedge.
Figure 8 shows the performance of this portfolio with the
ranked signal presented above.

Fig. 8. Portfolio performance with market fit signal, hedging market and
volatility. Returns have better performance. Sharpe = 1.278.

Overall, the holding period is close to 2.85 days, as Table
IV shows. However, this value is to be taken with care, as
there are numerous holes in the data that make the holding
period computation inaccurate. The actual holding period is
expected to be longer than this.

E. Comparison with standard mean-reversion

This signal is totally uncorrelated with the standard mean-
reversion strategy. This feature makes it very appealing, as it

makes it less likely to suffer overuse and market saturation as
a widely adopted mean reversion strategy could experience.
Moreover, there is still work to be done to improve the
performance and the stability of the strategy.

VI. PROSPECTIVE ENHANCEMENTS

A. Universe

In order to test the strength of the signal more thoroughly,
the same study could be conducted on other universes. The
number of stocks was maintained low to avoid aforemen-
tioned stability issues, and a natural extension of this work
would be to extend the number of stocks traded.

B. Signal construction

Due to the numerical instabilities and to noise in the
dataset, the signal can lead to a very high exposition to
certain stocks. Computing a modified signal with ranks
instead of raw signal helps reducing this problem, but further
numerical studies could reduce those instabilities.

C. Risk management

The portfolio is only built hedging two main risk factors,
which are market and volatility. Several important risk factors
have not been dealt with here: momentum, value, quality...
Hedging industry sectors would also be of great interest for
the stability of the portfolio. Also, constructing the signal by
sector could also be a solution to avoid numerical instabilities
stemming from the estimation of large correlation matrices.

VII. CONCLUSION

This paper deals presents an innovation to the standard,
widely used mean-reversion strategy. Incorporating cross-
correlations in the estimation of the signal, this method cap-
tures an additional source of information in the construction
of the portfolio.

Hedging properly risk factors is crucial in the construction
of the portfolio, as it stabilizes the signal, and makes sure
that it is not taking bets on the market or any risk factor.

The results are promising, as this signal is totally uncor-
related to the standard mean-reversion. More work would be
needed to stabilize the signal, to explore the hyperparameters
space and to hedge more risk factors.
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APPENDIX I
MATRIX INVERSION OPTIMIZATION

TABLE I
COMPARISON OF THE PERFORMANCE FOR SUB-MATRIX INVERSION METHODS

Matrix size Woodbury inversions Classical inversions Speedup
n = 10 8.02 10−4 1.46 10−3 1.82
n = 50 6.08 10−3 4.30 10−2 7.06
n = 100 3.51 10−2 4.48 10−1 12.7
n = 200 1.61 10−1 2.57 100 16.0
n = 500 2.70 100 4.94 101 18.3

One computational bottleneck of the developed algorithm is the inversion of the nstocks sub-matrices of the correlation
matrix R. The method developed in section IV-B, relying on fast inversion of the sub-matrices by considering them as
rank-two perturbations of the main matrix R, yields a significant performance increase. This method will be described as
“Woodbury inversions”, compared to the “Classical inversions” method, which extracts and inverts sequentially the nstocks
sub-matrices. The benchmark was conducted using the correlation matrices of random nstocks × 6 nstocks matrices, and its
results are reported in seconds. As described in Table I, this method is especially efficient when working with a large array
of stocks.

APPENDIX II
PERFORMANCE AND RESULT TABLES

The following tables shows the results of the three different signals. The first signal is obtained through the correlation
matrix of the raw returns. The second signal is obtained with the correlation of the returns net of the market. The third
signal is obtained from the second by ranking the values and using the rank as the signal. Hedging the risk factors highly
increases the performance. The ranked signal has a Sharpe ratio comparable to the normal signal, but has a much lower
variance, as seen in the return per trade table.

TABLE II
SHARPE RATIOS

Hedge \ Signal Raw returns Market net returns Mkt net + ranked
No hedge 0.263 0.972 0.914

Hedge market 0.517 1.067 1.019
Hedge vol 0.410 1.158 1.203

Hedge mkt and vol 0.520 1.235 1.278

TABLE III
RETURN PER TRADE (%)

Hedge \ Signal Raw returns Market net returns Mkt net + ranked
No hedge 0.010 0.028 0.018

Hedge market 0.019 0.031 0.021
Hedge vol 0.014 0.032 0.022

Hedge mkt and vol 0.018 0.034 0.023

TABLE IV
HOLDING PERIOD

Signal Raw returns Market net returns Mkt net + ranked
Holding period 2.84 2.86 2.86


