Optimal High-Frequency Market Making

Takahiro Fushimi, Christian González Rojas and Molly Herman

Stanford University

June 5, 2018

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ うらつ

Model and Algorithm	Thesys Results	Trading Simulator	Experiments
•000			

2 Thesys Results

3 Trading Simulator

Model	and	Algorithm
0000		

Thesys Results

Trading Simulator

Experiments

Model for price

Optimal Bid and Ask Model

We will use the framework developed by Avellaneda and Stoikov (2008), which obtains optimal bid and ask:

Agent optimizes its value function:

$$v(x,s,q,t) = \mathbb{E}_t[-e^{-\gamma(x+qS_T)}]$$

to obtain the market-maker's indifference price:

$$r(s,t) = s - q\gamma\sigma^2(T-t)$$

• Which allows the market-maker to obtain the optimal spread:

$$\delta^{a} + \delta^{b} = \gamma \sigma^{2} (T - t) + \frac{2}{\gamma} \ln \left(1 + \frac{\gamma}{\kappa} \right)$$

Problem: Inventory risk associated to order size is not addressed.

Optimal High-Frequency Market Making

Model and Algorithm ○○●○	Thesys Results	Trading Simulator	Experiments
Model for inventory	y control		

Dynamic Order Size

We will use a decaying function to model order size, unlike Guéant, Lehalle and Fernandez-Tapia (2012), who cap trading at a maximum inventory level.

This allows us to keep trading and profit from rebates.

Optimal High-Frequency Market Making

Model and Algorithm ○○○●	Thesys Results	Trading Simulator	Experiments
Trading A	lgorithm		
while curi if no else i it	rent time < 16:00 do orders in the book then Quote bid and ask prices ; f 1 order in the book then f current time - execution time ; Cancel the outstanding order Quote new bid and ask price	> waiting time then ;; s;	

```
eise
            Wait
        end
   else if 2 orders in the book then
        if current time - quote time > update time then
            Cancel both order;
            Quote new bid and ask prices;
        else
            Wait
        end
    end
end
```

Model and Algorithm	Thesys Results	Trading Simulator	Experiments
	••		

2 Thesys Results

3 Trading Simulator

Model and Algorithm	Thesys Results	Trading Simulator	Experiment
	0		
These Desults		- 10 0017	
Theses Results	CAIVIZINI ON IIIN		

Quoted Prices

Inventory

Optimal Bid-Ask Spread

Optimal High-Frequency Market Making

3

Model and Algorithm	Thesys Results	Trading Simulator	Experiments
		•00	

2 Thesys Results

3 Trading Simulator

Model and Algorithm	Thesys Results 00	Trading Simulator ○●○	
Trading Simulator			

The Simulator

1 Market order dynamics:

Let ξ be the depth of our quote, we model the number of arrivals as a Time-Inhomogeneous Poisson Process:

$$N_t \sim Pois\left(\int_0^t \lambda(s,\xi) ds
ight)$$
 where $\lambda(t,\xi) = lpha_t e^{-\mu\xi}$

2 Execution criteria:

- Assume execution occurs if X = 1 for $X \sim Ber(\lambda(t,\xi) \cdot \Delta)$.
- We allow for partial order execution by modeling the size of market orders as a Gamma(k, θ).

3 Other assumptions:

- Time interval is 1 second \Rightarrow No latency
- No price impact
- No competition with other market makers

Model and Algorithm	Thesys Results	Trading Simulator ○○●	Experiments
Model for Market of	order dynamics		

Intensity Modeling

We assume that the intensity of the Poisson Process is a product of time and depth components.

$$\lambda(t,\xi) = \alpha_t \cdot \underbrace{e^{-\mu\xi}}_{t=1} \quad \text{for } t \in [9:30, \ 16:00], \ \xi \ge 0$$

time depth

Depth component $e^{-\mu\xi}$

Model and Algorithm	Thesys Results	Trading Simulator	Experiments
			•0000000

2 Thesys Results

3 Trading Simulator

Model and Algorithm	Thesys Results 00	Trading Simulator	Experiments ⊙●○○○○○○
Setting			

- Date: June 12, 2017, 9:30am 4pm
- Calibrate parameters using the data from the previous week
- P&L = Cash + Book Value
 - Cash = shares sold * price shares bought * price (and rebate)
 - Book Value = Current Position * Market Mid Price
- Rebate: 0.003 per unit share

Stocks to trade

	Volume	Performance	Open Spread	Close Spread
AAPL	high	high	0.05	0.01
AMZN	low	high	0.49	0.56
GE	high	low	0.04	0.01
IVV	low	high	0.03	0.01
Μ	low	low	0.09	0.01

Model and Algorithm	Thesys Results	Trading Simulator	Experiments
Results: AAPI	une 12, 2017		

Optimal High-Frequency Market Making

Model and Algorithm	Thesys Results 00	Trading Simulator	Experimen
Results [.] AM7N	lune 12 2017		

955

950

945 09:30:00

11:30:00

time (second)

Optimal Bid-Ask Spread

15:30:00

Model and Algorithm	Thesys Results 00	Trading Simulator	Experiments
Results: GF lune	<u>- 12 2017</u>		

P&L

Inventory

Optimal High-Frequency Market Making

3

Model and Algorithm	Thesys Results	Trading Simulator	Experiments 00000●00
Results: IVV. June	e 12. 2017		

Quoted Prices

Optimal Bid-Ask Spread

Inventory

Model and Algorithm	Thesys Results 00	Trading Simulator	Experiments 000000●0	
Results M	lune 12 2017			

Quoted Prices

P&L

Inventory

Optimal Bid-Ask Spread

Optimal High-Frequency Market Making

Stanford University

Model and Algorithm	Thesys Results	Trading Simulator	Experiments 0000000●
Results: Statistics			

Run the simulation from June 12, 2017 to June 16 2017

Main Results of the Trading Week

	Profits		Position	
	Mean	Stdev	Mean	Stdev
AAPL	-988.54	289.82	0.86	63.66
AMZN	32426.72	16157.0	48.52	438.33
GE	245.0	192.92	-2.41	60.92
IVV	23.14	129.9	-0.49	67.9
Μ	144.26	146.78	-0.83	46.14

Note: Strategy executed between June 12, 2017 and June 16, 2017

< 口 > < 同

Optimal High-Frequency Market Making

Takahiro Fushimi, Christian González Rojas and Molly Herman

Stanford University

June 5, 2018

・ロト ・ 日 ・ エ ヨ ト ・ 日 ・ うらつ

References

- **1** Marco Avellaneda & Sasha Stoikov (2008) High-frequency trading in a limit order book, *Quantitative Finance*, 8:3, 217-224, DOI: 10.1080/14697680701381228
- 2 Olivier Guéant, Charles-Albert Lehalle & Joaguín Fernandez-Tapia (2013) Dealing with the inventory risk: a solution to the market making problem, Mathematics and Financial Economics 7.477

https://doi.org/10.1007/s11579-012-0087-0