# Fundamental Signals Strategy

Daniel Cohn, Chase Navellier, Thomas Rogers



## Fundamental Signal Persistence

|                     | (1)    | (2)     | (3)         | (4)      | (5)                    | (6)         |
|---------------------|--------|---------|-------------|----------|------------------------|-------------|
|                     | Sharpe |         |             |          | $\operatorname{Proba}$ | Signal      |
|                     | Ratio  | $\beta$ | $\beta^{-}$ | Skewness | $(r_t < -2\sigma)$     | Persistence |
| Market - short rate | .47    | 1       | 1           | 13       | .031                   |             |
| Low vol             | .43    | 015     | 0           | 06       | .032                   | .99         |
| Book to Market      | .2     | .029    | .11         | .035     | .025                   | .98         |
| Repurchasers        | .55    | .01     | .04         | 053      | .019                   | .96         |
| Momentum            | .43    | 041     | 1           | 007      | .025                   | .88         |
| Industry Leaders    | .48    | 016     | 14          | .008     | .029                   | .15         |
| Accruals            | .77    | .014    | 027         | .027     | .018                   | .95         |
| ROE                 | .55    | 025     | 033         | .021     | .01                    | .97         |
| Cash-Flows          | 1.2    | 016     | 055         | .06      | .021                   | .97         |
| ROA                 | .46    | 025     | 054         | .08      | .01                    | .99         |


#### The Excess Returns of "Quality" Stocks: A Behavioral Anomaly Bouchaud, Cilberti, Landier, Simon, Thesmar (2016)

## The Fundamental Quality Anomaly

|                                   | Panel A: Long Sample (U.S., 1956 - 2012) |                       |                       |                         |                          | Panel B: Broad Sample (Global, 1986 - 2012) |                       |                       |                          |                       |
|-----------------------------------|------------------------------------------|-----------------------|-----------------------|-------------------------|--------------------------|---------------------------------------------|-----------------------|-----------------------|--------------------------|-----------------------|
| _                                 | QMJ Pr                                   | ofitability           | Safety                | Growth                  | Payout                   | QMJ Pr                                      | ofitability           | Safety                | Growth                   | Payout                |
| Excess Returns                    | <b>0.40</b> (4.38)                       | <b>0.27</b> (3.81)    | <b>0.23</b> (2.06)    | 0.12                    | <b>0.31</b> (3.37)       | <b>0.38</b> (3.22)                          | <b>0.34</b> (3.30)    | 0.19                  | 0.02                     | <b>0.38</b> (3.41)    |
| CAPM-alpha                        | <b>0.55</b><br>(7.27)                    | <b>0.33</b><br>(4.78) | <b>0.42</b> (4.76)    | 0.08                    | <b>0.46</b><br>(6.10)    | <b>0.52</b><br>(5.75)                       | <b>0.43</b> (4.61)    | <b>0.34</b> (3.07)    | (0.24)<br>0.02<br>(0.18) | <b>0.49</b> (5.29)    |
| 3-factor alpha                    | <b>0.68</b> (11.10)                      | <b>0.45</b><br>(7.82) | <b>0.59</b> (8.68)    | <b>0.20</b><br>(3.32)   | <b>0.43</b><br>(6.86)    | <b>0.61</b><br>(7.68)                       | <b>0.53</b><br>(6.11) | <b>0.50</b> (5.40)    | 0.14                     | <b>0.44</b> (5.17)    |
| 4-factor alpha                    | <b>0.66</b> (10.20)                      | <b>0.53</b> (8.71)    | <b>0.57</b><br>(7.97) | <b>0.38</b><br>(6.13)   | <b>0.21</b><br>(3.43)    | <b>0.45</b><br>(5.50)                       | <b>0.49</b><br>(5.34) | <b>0.39</b> (4.00)    | <b>0.29</b><br>(3.91)    | <b>0.19</b> (2.26)    |
| МКТ                               | <b>-0.25</b><br>(-17.02)                 | <b>-0.11</b> (-8.08)  | <b>-0.34</b> (-20.77) | <b>0.05</b> (3.35)      | <b>-0.20</b><br>(-14.47) | <b>-0.24</b> (-14.36)                       | <b>-0.16</b> (-8.33)  | <b>-0.28</b> (-13.74) | 0.00                     | <b>-0.18</b> (-10.50) |
| SMB                               | <b>-0.38</b><br>(-17.50)                 | <b>-0.21</b> (-10.21) | <b>-0.41</b> (-17.00) | <b>-0.05</b><br>(-2.53) | <b>-0.30</b> (-14.82)    | <b>-0.33</b><br>(-9.46)                     | -0.20<br>(-5.07)      | <b>-0.31</b> (-7.48)  | <b>-0.18</b> (-5.62)     | -0.23<br>(-6.58)      |
| HML                               | <b>-0.12</b> (-5.03)                     | <b>-0.28</b> (-12.16) | <b>-0.23</b> (-8.50)  | <b>-0.44</b> (-18.8 I)  | <b>0.39</b> (16.68)      | -0.01<br>(-0.31)                            | <b>-0.16</b> (-3.95)  | <b>-0.22</b> (-5.23)  | <b>-0.38</b> (-11.62)    | <b>0.36</b> (9.89)    |
| UMD                               | 0.02                                     | <b>-0.07</b> (-3.80)  | 0.01                  | <b>-0.17</b> (-8.55)    | <b>0.21</b> (10.79)      | <b>0.15</b> (5.54)                          | 0.03                  | <b>0.10</b> (3.07)    | <b>-0.14</b> (-5.64)     | <b>0.24</b> (8.57)    |
| Sharpe Ratio<br>Information Ratio | 0.58<br>1.46                             | 0.51<br>1.25          | 0.27<br>1.14          | 0.22<br>0.88            | 0.45<br>0.49             | 0.62<br>1.16                                | 0.63<br>1.13          | 0.26<br>0.84          | 0.05<br>0.83             | 0.66<br>0.48          |
| Adjusted R2                       | 0.57                                     | 0.37                  | 0.63                  | 0.40                    | 0.60                     | 0.60                                        | 0.34                  | 0.58                  | 0.35                     | 0.52                  |

**Quality Minus Junk** Asness, Frazzini, Pedersen (2013)

Figure 1: Cumulative Return of a Quality Anomaly



The Excess Returns of "Quality" Stocks: A Behavioral Anomaly Bouchaud, Cilberti, Landier, Simon, Thesmar (2016)

## Defining "Quality"

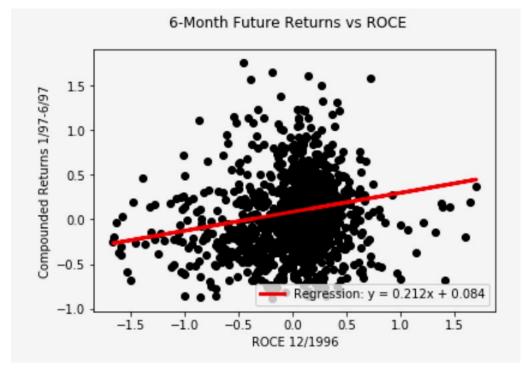
## Quality = z(Profitabiliy + Growth + Safety + Payout)

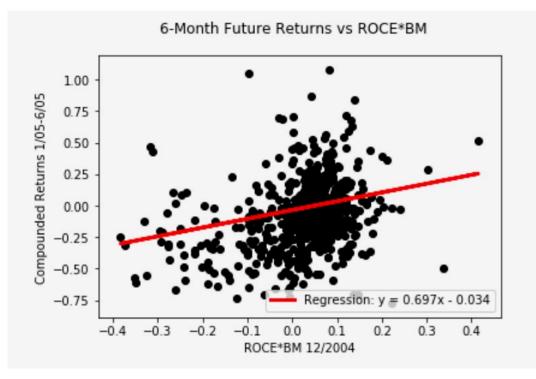
| Profitability/<br>Growth | Safety  | Payout |
|--------------------------|---------|--------|
| GPOA                     | BAB     | EISS   |
| ROE                      | IVOL    | DISS   |
| ROA                      | LEV     | NPOP   |
| CFOA                     | O-Score |        |
| GMAR                     | Z-Score |        |
| ACC                      | EVOL    |        |

## Quantitative Warren Buffet: Quality at a Reasonable Price (QARP)

- As one would expect, the outperformance of quality is inversely related to the premium paid for said companies
- Accordingly, the historical outperformance of fundamentally quality stocks varies over time depending on the "quality premium"
- Sharpe ratios of 0.7 and 0.9 for the US and Global stock universes were achieved using a basic QARP that used book-tomarket as the value indicator

## Enhancing QARP


- Defining value and incorporating it into the overall signal
- Finding the ideal weightings between all variables
- Deciding linear or nonlinear combinations (e.g. quality + value vs. quality\*value)
- Deciding which categories to focus on


Data and Research

## Data Preparation

- Merging Initial Datasets
  - PERMNOs
- Data Cleaning
  - Remove Missing Values
  - Find and Remove extreme data points
- Preprocessing
  - Creating 3-month, 6-month, and 1-year future returns
  - Standardization

## The Quality Anomaly Illustrated





### Research on Individual Fundamentals

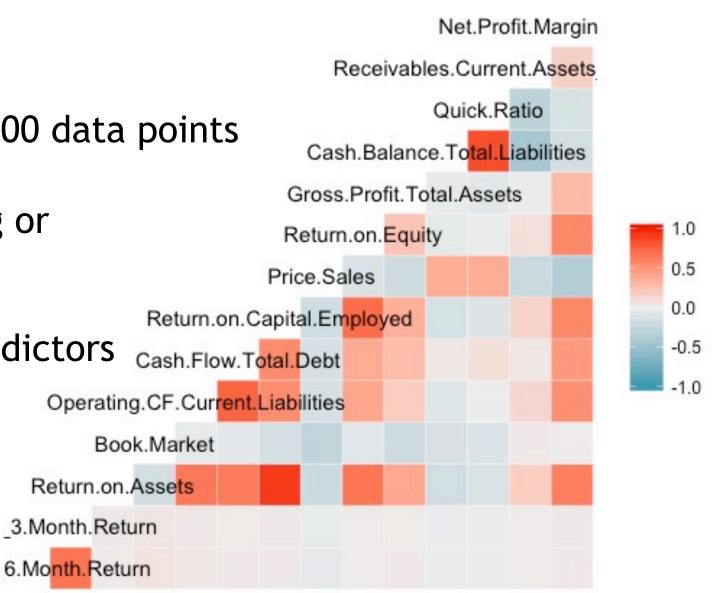
- From our Wharton research database, we selected 40 of 70 fundamentals with the potential to indicate one of the four categories of quality
- Using standard assumptions we ran two single linear regressions on each z-scored fundamental versus z-scored future return (3-month and 6month) for all US stocks
- Filtering for p-values under 0.05, we ranked signal strength for each fundamental by the magnitude of its coefficient and then selected the top 12 fundamentals appearing in both return windows

#### ----- roa -----Coefficient: /n 0.06107589945194121 p-value: /n 0.0 r2: /n 0.0037302654938636283 ----- ocf lct -----Coefficient: /n 0.06040861674481992 p-value: /n 0.0 r2: /n 0.0036492009770225393 ----- roe -----Coefficient: /n 0.06034728289235338 p-value: /n 0.0 r2: /n 0.003641794552489727 ----- cash\_debt -----Coefficient: /n 0.04891110088785186 p-value: /n 1.191019077663599e-297 r2: /n 0.002392295790061625 ----- roce -----Coefficient: /n 0.04383086461667993 p-value: /n 3.783734717784843e-242 r2: /n 0.001921144693045723 ----- ps -----Coefficient: /n -0.04321043338331969 p-value: /n 4.177417783877513e-234 r2: /n 0.0018671415531743055 ----- roe -----Coefficient: /n 0.04104724503176234 p-value: /n 1.5402482215652414e-207 r2: /n 0.0016848763246975374 ----- bm -----Coefficient: /n 0.03521852212373669 p-value: /n 3.019836185825817e-154 r2: /n 0.0012403443005801341 ----- GProf -----Coefficient: /n 0.029139526852746143 p-value: /n 3.1611923083910485e-109 r2: /n 0.0008491120252019147 ----- cash lt -----Coefficient: /n -0.023919730971725443 p-value: /n 3.705035884046135e-74 r2: /n 0.0005721535297597211 ----- rect act -----Coefficient: /n 0.0224087009511717 p-value: /n 4.7141880482080975e-55 r2: /n 0.0005021498783190427 ----- cfm -----Coefficient: /n 0.0209386574175141 p-value: /n 1.7052171848729248e-56 r2: /n 0.00043842737444801895 ----- npm -----Coefficient: /n 0.020396839450069388 p-value: /n 4.320057028773824e-54 r2: /n 0.0004160310595519052 ----- guick ratio -----Coefficient: /n -0.01968701599174346 p-value: /n 6.062331802503726e-43 r2: /n 0.00038757859865916236 ----- opmad -----Coefficient: /n 0.019303275543765385 p-value: /n 1.262879385888264e-48 r2: /n 0.0003726164467185299 ----- opmbd -----Coefficient: /n 0.019157447726316716 p-value: /n 6.397796988724069e-48 r2: /n 0.0003670078033865566

3-month ret

6\_month\_ret

----- roa -----Coefficient: /n 0.07608533160136624 p-value: /n 0.0 r2: /n 0.00578897768488986 ----- ocf lct -----Coefficient: /n 0.07518700043081517 p-value: /n 0.0 r2: /n 0.005653085033783387 ----- roe -----Coefficient: /n 0.07167661067100652 p-value: /n 0.0 r2: /n 0.005137536517283053 ----- cash\_debt -----Coefficient: /n 0.059346288319372074 p-value: /n 0.0 r2: /n 0.0035219819372860417 ----- bm -----Coefficient: /n 0.05630492509935517 p-value: /n 0.0 r2: /n 0.003170244590443999 ----- ps -----Coefficient: /n -0.05553319230373514 p-value: /n 0.0 r2: /n 0.003083935447443624 ----- roce -----Coefficient: /n 0.04704847747895677 p-value: /n 1.3917472308593605e-278 r2: /n 0.0022135592330879035 ----- roe -----Coefficient: /n 0.042899419904306 p-value: /n 2.145895757884988e-226 r2: /n 0.0018403602281259724 ----- cash lt -----Coefficient: /n -0.03603221872125644 p-value: /n 8.772901225353591e-166 r2: /n 0.0012983207859764631 ----- quick ratio -----Coefficient: /n -0.031061880720905436 p-value: /n 3.826351305724154e-104 r2: /n 0.000964840433919757 ----- GProf -----Coefficient: /n 0.03100606874826707 p-value: /n 2.3431626571739368e-123 r2: /n 0.0009613762992222639 ----- rect act -----Coefficient: /n 0.03063337770423184 p-value: /n 3.180630569309106e-101 r2: /n 0.0009384038295701275 ----- debt assets -----Coefficient: /n 0.028155323934686654 p-value: /n 3.1539055531764654e-102 r2: /n 0.0007927222658671413 ----- curr ratio -----Coefficient: /n -0.026604203543925738 p-value: /n 6.817747800582344e-77 r2: /n 0.0007077836462066297 ----- pretret\_noa -----Coefficient: /n 0.0264272227406736 p-value: /n 2.0698021061526831e-75 r2: /n 0.000698398101785174 ----- npm -----Coefficient: /n 0.026274752959098743 p-value: /n 1.65928647826224e-88 r2: /n 0.00069036264306167


## Building Our Model

## Why Lasso?

• Over 40 predictors and 170,000 data points

6.Month.Return

- High danger of data snooping or over-fitting training set
- Several highly correlated predictors
- Elastic Net

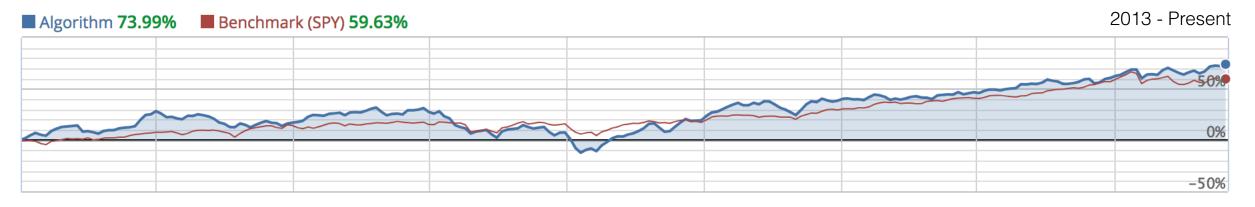


## Training LASSO

- Cross-validated training and validation sets
- Fine tuning hyper parameters
- 4 different variations
- Extracting final models

## Our QARP Signal

|               | Predictor                                | Signal Magnitude |  |
|---------------|------------------------------------------|------------------|--|
| Value         | Book / Market                            | 0.042330506      |  |
| Va            | Price / Sales                            | 0.015901132      |  |
| Safety        | Receivables / Current Assets             | 0.000481912      |  |
|               | <b>Operating CF/ Current Liabilities</b> | 0.041922074      |  |
|               | Cash Flow / Total Debt                   | 0.013048011      |  |
|               | Cash Balance / Total Liabilities         | 0.018602827      |  |
|               | Quick Ratio                              | 0.012558456      |  |
| Profitability | Return on Assets                         | 0.008317245      |  |
|               | Return on Capital Employed               | 0.009377227      |  |
|               | Return on Equity                         | 0.021725955      |  |
|               | Gross Profit / Total Assets              | 0.006045664      |  |
|               | Net Profit Margin                        | 0.01141551       |  |


- Each coefficient is standardized, as well as the overall signal
- Weights are assigned based on their coefficients in the Lasso Regression

Portfolio Performance and Next Steps

## **Backtesting Results**

 RETURNS
 ALPHA
 BETA
 SHARPE
 DRAWDOWN

 73.94%
 0.03
 1.01
 0.76
 -35.43%



| RETURNS | ALPHA | BETA | SHARPE | DRAWDOWN |
|---------|-------|------|--------|----------|
| -4.04%  | 0.05  | 0.96 | 0.11   | -50.58%  |

# Algorithm -0.89% Benchmark (SPY) 2.28% 2007 - 2010

## Backtesting Results

- Portfolio constructed via Markowitz optimization, maximizing the QARP signal
- From 2013 to the present, we achieved a Sharpe ratio of 0.76
- Constraints:
  - Maximum level of historical volatility equal to that of SPY
  - Long US equities only
  - No equity over 2.5% of portfolio
  - No leverage

## Ideas for Expansion

- Using volatility correlation in MPT to calculate portfolio risk, rather than average variance
- We searched for the most persistent quality and value signal, but "nothing lasts forever"
  - A dynamic research process could enhance performance by discovering more transient signals as the market mutates over time
- Data mining more fundamentals and applying White's data snooping "reality check" when evaluating p-values
- Performing data transformations to improve the assumptions of linear regression