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Context

e Goal: developing a statistical arbitrage
strategy

e Universe: most traded US equity; trading
on a daily basis

e Method:
o  producing a trading signal;
o  trading according to the signal, while
market/factor neutral;
o  evaluating with Sharpe ratio and holding
period.
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Mean Reversion

e Mean Reversion Hypothesis: Prices will go
back to their average.
e Other formulation: Divergence from the

model followed by return to the model.

—— 5.days moving average AAPL

= realized AAPL
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Cross-Sectional mean reversion

e Cross-Sectional Hypothesis: Stocks MSFT

= inferred AAPL

110.0 1 — realized AAPL

behave like the stocks they are historically

correlated to. 1075 -
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Signal generation

e Ateachdate:
o  Fita GARCH model as of N edict days in the
past
o  Foreach stock :
m Lock the performance of the others
since the fit
m Compute predicted mean and
variance based on the others
m  Compare realization with those
mean and variance

e Mean reversion on this criterion



Cross-Sectional mean reversion

e Underlying single-stock model: Generalized
AutoRegressive Conditional
Heteroskedasticity

e Cross-Sectional model: Innovations are
correlated by a matrix R

returns : 7:; = U; + €4
innovations : € ~ o;. N(0, R)

Tops . . 2 2 T
volatilities : o}, = w; + i€y, + Bioy
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Market beta-residuals

e We want stock returns independently of

the market performance

e Having flat exposure to common

factors reduces risk and systemic

exposure

market returns : 'r'f”

single stock returns : 7,
beta coefficients : f;;

= returns of the S&P500
= Bit. "“fVI + €t
as backward rolling OLS
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Stock returns correlations

e Using market
beta-residuals yields
more relevant

correlations
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Risk factor-residuals

e Having flat exposure to common

factors (volatility, momentum, single stock returns : ry; = BL,. Fl + 82, F? + €;
sectors...) reduces risk and systemic beta coefficients : ,Bft as backward rolling OLS
exposure

e Same method as market residual, but

we build the factors ourselves
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Numerical considerations

e Impact of bad conditioning of the
correlation matrix on numerical stability

e Moore-Penrose pseudo-inverse for matrix
inversion stabilization

e Woodbury formula for efficient perturbed
matrix inversion

e Stabilization of the GARCH procedure by

catching diverging cases



Results

e Difficult to get a stable and clean signal due to
outliers in the data, and numerical instabilities when
using too many stocks

e We present results obtained on trading on the
largest 100 stocks in the universe

e Weremoved the market when fitting to get accurate
correlation estimations

e We gradually zeroed our exposition to the risk

factors to identify their impact.



Results

Signal fitted with: plain returns

Portfolio built;

Performance:

e Sharpe:0.410
e Return pertrade:0.014%
e Holding Period : 2.84

without hedging risk factors
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Results

Signal fitted with: market residuals

Perf with vol and market residuals

Portfolio built:  without hedging risk factors
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Results

Signal fitted with:market residuals

Portfolio built:  hedging market

Performance:

e Sharpe:1.067
e Return pertrade: 0.031%
e Holding Period : 2.57
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Results

Signal fitted with:market residuals

Portfolio built:  hedging volatility

Performance:

e Sharpe:1.158
e Return pertrade: 0.032%
e Holding Period : 2.57
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Results

Signal fitted with:market residuals.

Perf with vol and market residuals

Portfolio built:  hedging market and volatility
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Results

e Estimation of correlation gets better as we remove a common market
driver in the stock movements;

e Hedging factors when building portfolio brings value;

Remarks:

o  Holding period is not accurate due to holes in the data

o  Hyperparameters have not been tuned yet



Comparison with mean-reversion

Mean-reversion,

Perf with beta residuals

Portfolio built:  hedging market and volatility ]
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Performance : N
e Sharpe:1.425 o1
e Return pertrade: 0.087% o]

e Holding Period : 4.98
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Comparison with mean-reversion

e Signals for mean-reversion and cross-correlation mean-reversion are
uncorrelated;

e This strategy is not used by most hedge funds contrary to
mean-reversion;

e With more work, the signal can be improved and stabilized.



Conclusion

e Cross-sectional correlation of returns can be used to design a
“return-to-normal” trading signal;

e Including market factors leads to significant improvements in
mean-reversion strategies performance;

e Numerical performance and stability, as well as quality of data are

crucial to the evaluation of a trading signal.



