# High Frequency Price Movement Strategy

Adam, Hujia, Samuel, Jorge

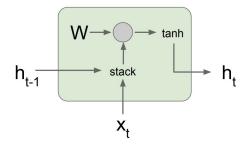
### Overview

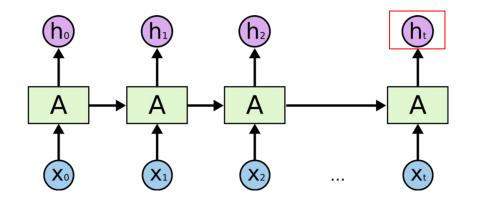
| Deep Learning<br>Strategy            | <ul> <li>RNN Overview</li> <li>Feature and Label Generation</li> <li>Model Formation</li> <li>Strategy</li> <li>Results</li> </ul>                          |
|--------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Statistical<br>Arbitrage<br>Strategy | <ul> <li>Statistical Arbitrage Overview</li> <li>Finding Correlated Pairs</li> <li>Stochastic Control</li> <li>Parameter Tuning</li> <li>Results</li> </ul> |
| Conclusion                           | Future Work                                                                                                                                                 |

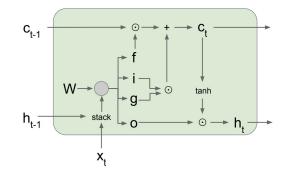
# **RNN Strategy**

# Recurrent Neural Networks (RNN)

- Family of Neural Network specialized for sequence data
- 'Many-to-One' architecture
- 'Vanilla' vs. Long short-term memory (LSTM)







# RNN: Feature and Label Generation

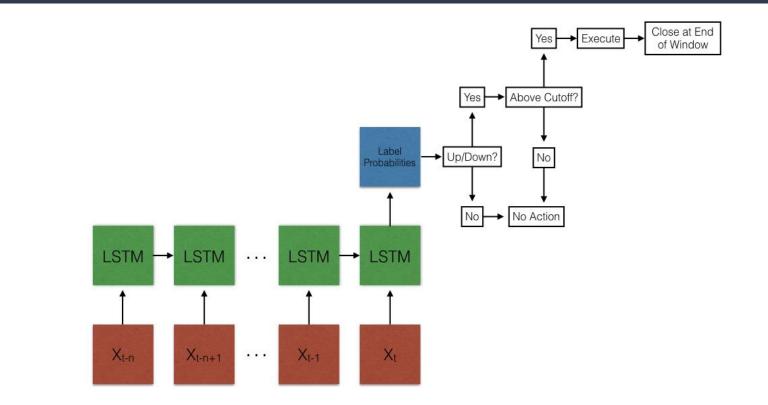
| Features                                                                                                                                                                                                                                                       | Labels (Classification & Regression)                                                                                                                                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <ul> <li>Bid/Ask Prices and Spread (10 levels)</li> <li>Volumes (10 levels)</li> <li>Mean Prices and Volumes</li> <li>Accumulated Price and Volume<br/>Differences</li> <li>Price and Volume Changes</li> <li>Order Imbalance Changes</li> <li>VWAP</li> </ul> | <ul> <li>Mid-Price Movement</li> <li>Volume Weighted Average Price (VWAP)<br/>Movement</li> <li>Settled on classifying VWAP movement<br/>over the next time 'window'</li> </ul> |

## **RNN: Model Formation**

- Cost Function: Weighted Cross Entropy
  - Helps solve challenge of having an imbalanced dataset
- Output: Softmax Layer
  - Outputs a predicted probability for each label
- Unit: LSTM
  - Long short-term memory (LSTM) units to model longer term dependencies

- Hyperparameters:
  - Number of Units
  - Prediction Window for Label
  - Trade Probability Cutoff
  - Cross Entropy Weights
  - Other (e.g. Learning Rate, Dropout)

# RNN: Strategy



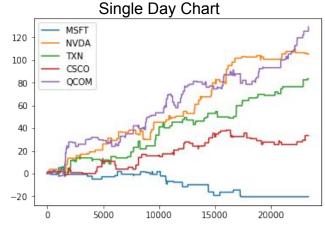
# RNN: Results and Next Steps

#### • The Good:

- Profitable for majority of stocks on the test set
- Generally steady profits throughout day
- Results consistent with baseline

#### • The Bad:

- <u>Traded at the mid-price</u>!
- Couldn't use Thesys backtester
- Scalability
- Next Steps:
  - Incorporate magnitude of movement
  - Regularization
  - Different ML Models



#### *Execution Accuracy* (Entire Test Set)

| MSFT  | NVDA  | TXN   | CSCO  | QCOM  |
|-------|-------|-------|-------|-------|
| 47.6% | 53.7% | 53.9% | 51.5% | 54.6% |

# Statistical Arbitrage Strategy

### Baseline model: Pairs trading with Avellaneda-Lee

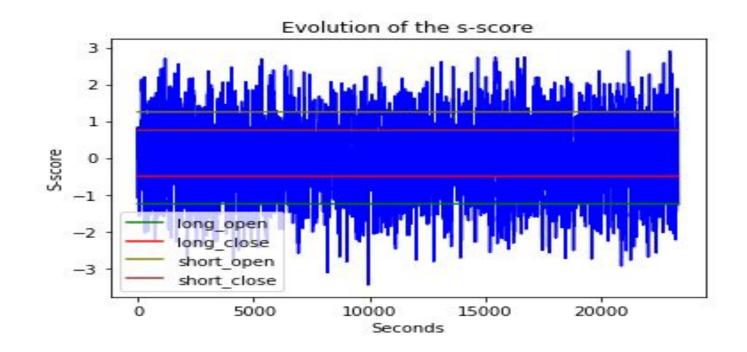
- Linearly regress the mid-price returns of a pair of historically correlated stocks
- Fit the residuals to a OU-process (using AR(1) model)

$$dr_t = \kappa(a - r_t)dt + \sigma dW_t$$

• **Mispricing** (and execution) if the last observation is far from the equilibrium

$$|S - Score| = \frac{|r_n - \overline{OU}|}{\sigma(OU)} > Threshold$$

### Example of execution process



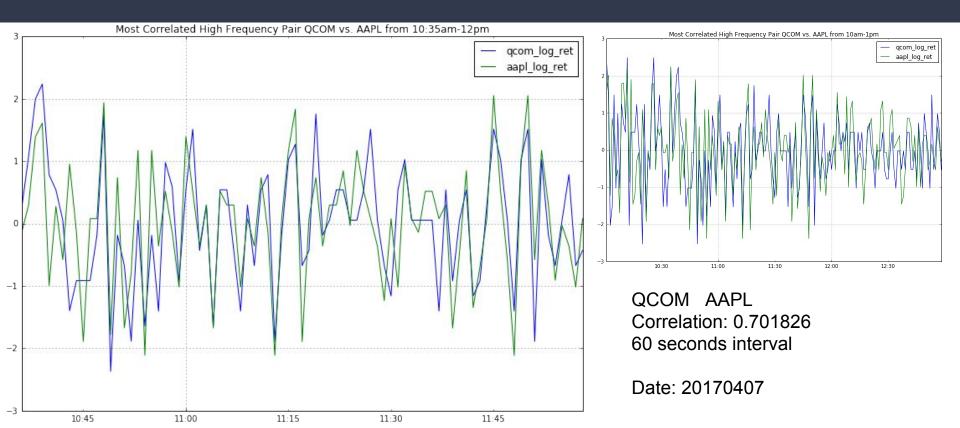
# What's New?

• Identifying most correlated pairs to trade

• **Stochastic control** to incorporate dynamically optimal thresholds

• Hyperparameter tuning (frequency, training size, leverage, etc.)

# Most Correlated High Freq Pair Example



# Most Correlated Pair for a 1-day Window.

| Time Interval(s) | <b>Most Correlated Pair</b> | Correlation |
|------------------|-----------------------------|-------------|
| 1                | (AAPL, FB)                  | 0.253802    |
| 5                | (AAPL, MSFT)                | 0.420605    |
| 10               | (QCOM, TXN)                 | 0.50241     |
| 20               | (FB, AAPL)                  | 0.565774    |
| 30               | (QCOM, TXN)                 | 0.609936    |
| 60               | (QCOM, AAPL)                | 0.701826    |

**Table 1.** Most Correlated Pair for a 1-day Window for Different Time Intervals.

• Note that the most correlated pair is different for different time intervals.

### Stochastic control (Cartea-Jaimungal-Peñalva)

- Motivation: Now **fixed**, **ad-hoc thresholds**, requiring calibration
- Idea: choose automatically and dynamically the best thresholds
- Technique: **stochastic control** (i.e. maximize the expected utility of the strategy)

Criteria for exiting a long/short position

$$H_{+}(t,r) = \sup_{\tau_{+}} \mathbb{E}_{t,r}[e^{-\rho(\tau_{+}-t)}(r_{\tau_{+}}-c)] \qquad H_{-}(t,r) = \sup_{\tau_{-}} \mathbb{E}_{t,r}[e^{-\rho(\tau_{-}-t)}(-r_{\tau_{-}}-c)]$$

Criteria for entering the position

$$G(t,r) = \sup_{\tau} \mathbb{E}_{t,r} \left[ e^{-\rho(\tau_{+}-t)} (H_{+}(\tau_{+},r_{\tau_{+}}) - r_{\tau_{+}} - c) \mathbb{1}_{\tau_{+} \wedge \tau_{-} = \tau_{+}} + e^{-\rho(\tau_{-}-t)} (H_{-}(\tau_{-},r_{\tau_{-}}) + r_{\tau_{-}} - c) \mathbb{1}_{\tau_{+} \wedge \tau_{-} = \tau_{-}} \right]$$

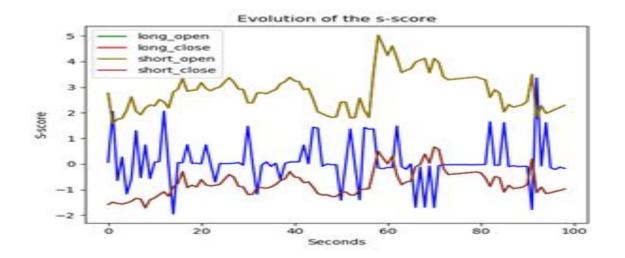
# Stochastic control (2)

- **Optimal times are given by thresholds** depending on the OU parameters (so dynamic and automatically computable)
- They are found by solving Hamilton-Jacobi-Bellman variational inequalities

$$\max \left\{ (\mathcal{L} - \rho) H_+(r); (r - c) - H_+(r) \right\} = 0 = \max \left\{ (\mathcal{L} - \rho) H_-(r); (-r - c) - H_-(r) \right\}$$
$$\max \left\{ (\mathcal{L} - \rho) G(r); (H_+(r) - r - c) - G(r); (H_-(r) + r - c) - G(r) \right\} = 0$$

$$\mathcal{L} = \kappa (a - r)\partial_r + \frac{1}{2}\sigma^2 \partial_{rr}$$

# Stochastic control (3)



- Numerically difficult problem, computational issues
- **Depends** on the **calibration** method, the **utility function**, and the **numerical methods**

# Parameter tuning

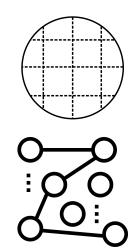
- Different environment than Avellaneda-Lee
- 4 5 parameters plus stock picking
  - Thresholds for trading
  - Time length for returns
  - Training size
  - Urgency parameter for stochastic control
  - Pairs to trade

|   | Ê       |    |
|---|---------|----|
| Ш | $\prod$ | 目  |
| 틩 | U       | IJ |

# Parameter tuning

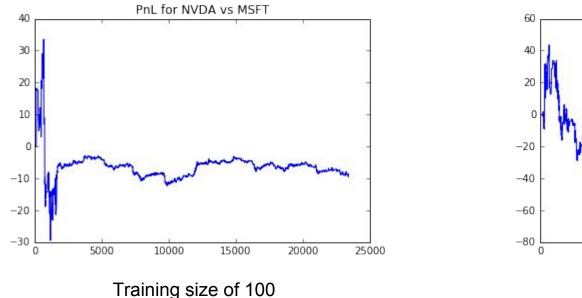
Two approaches to parameter tuning:

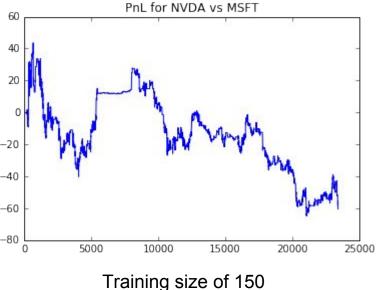
- Grid search
  - Systematic exploration
  - Enables for sensitivity analysis
  - Inefficient
- Random search
  - Black-box method
  - Explore larger subspace



### Parameter tuning

• Highly sensitive to changes in parameter values





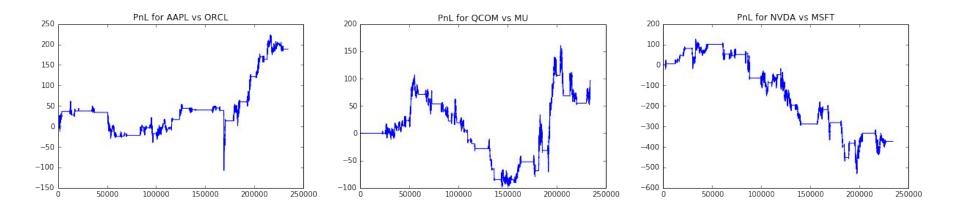
# Validation set

- Evaluation metric dollar per trade
- Evaluated 4 models
  - a. Fixed thresholds, pairs picked by performance
  - b. Fixed thresholds, pairs picked by correlation
  - c. Stochastic control thresholds, pairs picked by performance
  - d. Stochastic control thresholds, pairs picked by correlation
- Model a. performed best on validation set



#### Test set results

#### Inconclusive results



# Pairs Trading – Unstable Correlation for High Freq Pairs

| Time Interval(s) | Most Correlated Pair | Correlation |
|------------------|----------------------|-------------|
| 1                | (AAPL, FB)           | 0.253802    |
| 5                | (AAPL, MSFT)         | 0.420605    |
| 10               | (QCOM, TXN)          | 0.50241     |
| 20               | (FB, AAPL)           | 0.565774    |
| 30               | (QCOM, TXN)          | 0.609936    |
| 60               | (QCOM, AAPL)         | 0.701826    |

**Table 1.** Most Correlated Pair for a 1-day Window.

| Time Interval (s) | QCOM AAPL |
|-------------------|-----------|
| 1                 | 0.185366  |
| 5                 | 0.312954  |
| 10                | 0.408662  |
| 20                | 0.491515  |
| 30                | 0.588978  |
| 60                | 0.701826  |

**Table 2.** Correlation between QCOM AAPL for a 1-daywindow from different time intervals.

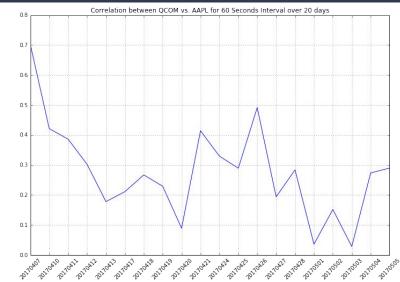
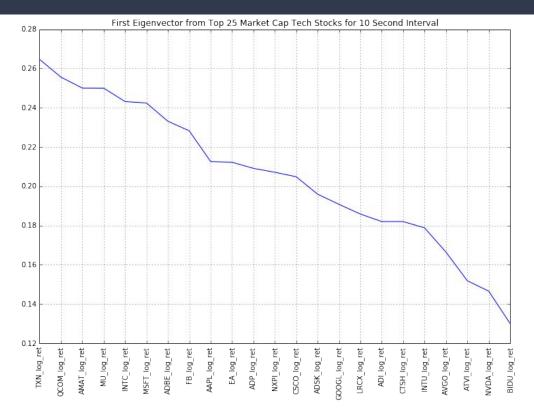


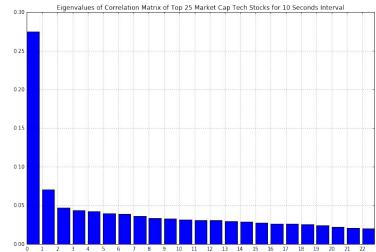
Figure 1. Correlation for same pair for 20-day Window.

#### **Conclusion:**

- 1. Most correlated pairs differ by time intervals.
- 2. Correlation for same pair changes by time intervals.
- 3. No pattern in correlation over different days.

# Incorporating PCA – Eigenportfolio





**Figure 2 (Left).** First eigenvector sorted by coefficient size from top 25 market cap tech stocks for 10 seconds interval. **(Right)** Eigenvalues of this pool of stocks for 10 seconds.

## Future Work

- To trade based on factors from PCA eigenportfolio and its eigenvalues:
  - take a variable number of eigenvectors, truncate to explain a given percentage of the total variance of the system

- Implement a more dynamic strategy
  - Using the correlation from yesterday to decide which pairs to trade today.
  - Or observe the market for a couple of hours and then start trading based on earlier correlation

# Thank you! Questions?

# References

[1] Avellaneda, M., & Lee, J. H. (2010). *Statistical Arbitrage in the US Equities Market*. Quantitative Finance, 10(7), p.761-782.

[2] Cartea, A., Jaimungal, S., and Peñalva, J. (2015). *Algorithmic and high frequency trading*. Cambridge University Press, chapter 11.

[3] Kercheval, A. and Zhang, Y. Modeling high-frequency limit order book dynamics with support vector machines. University of Florida, 2013