MS\&E 448 Midterm Presentation High Frequency Algorithmic Trading

Francis Choi George Preudhomme Nopphon Siranart Roger Song Daniel Wright

Stanford University

May 9, 2017

Overview

(1) Introduction - Order Book Dynamics
(2) Model Architecture
(3) Machine Learning Algorithm

- Random Forest
(4) Data
- Features
- Label
(5) Results

Order Book and Message book

Message book					
	Time(sec)	Price(S)	Volume	Event Type	Direction
$k-1$	34203.011926972	585.68	18	execution	ask
k	34203.011926973	585.69	16	execution	ask
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
$k+4$	34203.011988208	585.74	18	cancellation	ask
$k+5$	34203.011990228	585.75	4	cancellation	ask
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots
$k+8$	34203.012050158	585.70	66	execution	bid
$k+9$	34203.012287906	585.45	18	submission	bid
$k+10$	34203.089491920	586.68	18	submission	ask
k					

Order book

	Ask ${ }^{1}$		Bid^{1}		Ask ${ }^{2}$		Bid^{2}		Ask^{3}		Bid^{3}		
	Price	Vol.											
$k-1$	585.69	16	585.44	167	585.71	118	585.40	50	585.72	2	585.38	22	
k	585.71	118	585.44	167	585.72	2	585.40	50	585.74	18	585.38	22	
...			
$k+4$	585.71	118	585.70	66	585.72	2	585.44	167	585.75	4	585.40	50	
$k+5$	585.71	118	585.70	66	585.72	2	585.44	167	585.80	100	585.40	50	\ldots
		...											
$k+8$	585.71	100	585.44	167	585.80	100	585.40	50	585.81	100	585.38	22	
$k+9$	585.71	100	585.45	18	585.80	100	585.44	167	585.81	100	585.40	50	
$k+10$	585.6	18	585.45	18	585.71	100	585.44	167	585.80	100	585.40	50	...

Architecture of Our Model Framework

Random Forest

Data Summary

- IVV Stock Prices in Year 2015 containing 89,869 datapoints.
- Minute-by-minute (Except beginning/End of trading days)
- We used the first 80% for Training Set and the last 20% for Test Set

Features

Basic Set
$v_{1}=\left\{P_{i}^{\text {ask }}, V_{i}^{\text {ask }}, P_{i}^{\text {bid }}, V_{i}^{\text {bid }}\right\}_{i=1}^{n}$,
Time-insensitive Set Description $(i=$ level index $)$ $v_{2}=\left\{\left(P_{i}^{\text {ask }}-P_{i}^{\text {bid }}\right),\left(P_{i}^{\text {ask }}+P_{i}^{\text {bid }}\right) / 2\right\}_{i=1}^{n}$, Description $(i=$ level index $)$ $v_{3}=\left\{\max P_{i}^{\text {ask }}-\min P_{i}^{\text {ask }}, \max P_{i}^{\text {bid }}-\min P_{i}^{\text {bid }}\right\}_{i=1}^{n}$, bid-ask spreads and mid- prices $v_{4}=\left\{\frac{1}{n} \sum_{i=1}^{n} P_{i}^{\text {ask }}, \frac{1}{n} \sum_{i=1}^{n} P_{i}^{\text {bid }}, \frac{1}{n} \sum_{i=1}^{n} V_{i}^{\text {ask }}, \frac{1}{n} \sum_{i=1}^{n} V_{i}^{\text {bid }}\right\}$, max-min price differences $v_{5}=\left\{\sum_{i=1}^{n}\left(P_{i}^{\text {ask }}-P_{i}^{\text {bid }}\right), \sum_{i=1}^{n}\left(V_{i}^{\text {ask }}-V_{i}^{\text {bid }}\right)\right\}$, accumulated differences

Time-sensitive Set	Description $(i=$ level index $)$
$v_{6}=\left\{d P_{i}^{a s k} / d t, d P_{i}^{b i d} / d t, d V_{i}^{a s k} / d t, d V_{i}^{b i d} / d t\right\}_{i=1}^{n}$,	price and volume derivatives
$v_{7}=\left\{\lambda_{\Delta t}^{l a}, \lambda_{\Delta t}^{l b}, \lambda_{\Delta t}^{m a}, \lambda_{\Delta t}^{m b}, \lambda_{\Delta t}^{c a}, \lambda_{\Delta t}^{c b}\right\}$	average intensity of each type
$v_{8}=\left\{\mathbf{1}_{\left\{\lambda_{\Delta t}^{l a}>\lambda_{\Delta T}^{l a}\right\}}, \mathbf{1}_{\left\{\lambda_{\Delta t}^{l b}>\lambda_{\Delta T}^{l b}\right\}}, \mathbf{1}_{\left\{\lambda_{\Delta t}^{m a}>\lambda_{\Delta T}^{m a}\right\}}, \mathbf{1}_{\left\{\lambda_{\Delta t}^{m b}>\lambda_{\Delta T}^{m b}\right\}}\right\}$,	relative intensity indicators
$v_{9}=\left\{d \lambda^{m a} / d t, d \lambda^{l b} / d t, d \lambda^{m b} / d t, d \lambda^{l a} / d t\right\}$,	accelerations(market/limit)

Label

- Originally, binary classification (mid-price change)
- Changed to three-way classification (spread crossing)

Time	Bid	Ask	Upward	Downward	Label
1	207.29	207.32	-0.07	-0.02	-1
2	207.25	207.27	-0.01	0.02	0
3	207.26	207.27	0.04	0.08	1

Table: Labels using Upward cross and Downward Cross

- Our data: 26,105 ups $(+1), 37,870$ zeros $(0), 25,894$ downs (-1) Evenly distributed

Results

Key Observations

- We notice that those features in the lower levels are more important than those higher ones
- Volume and number of orders are the most significant features

Ranking	Features	Score
1	bids size 1	0.010127
2	asks size 2	0.010027
3	asks nord 0	0.010024
4	asks size 1	0.009959
5	bids nord 3	0.009956
6	asks nord 3	0.009895

Results

- Out of 17,973 entries, there are 1,947 ups (+1), 14,715 zeros (0), 1,311 downs (-1) in our predicted labels - biased towards zero
- Below shows the confusion matrix

		Prediction		
		1	0	-1
	1	420	4063	543
	0	503	6579	829
	-1	388	4073	575

Table: Confusion Matrix of the Predictions

- Not good enough !! \Rightarrow Set the threshold

Trading Strategy

- Consider likelihoods that model predicts for each new data point
- If the highest likelihood is -1 or 1 and that likelihood is sufficiently large enough (above our threshold), then trade in that direction
- For example, if the threshold $=0.40$, only time 1 and time 2 have the likelihood above the threshold. However, we only open position at time 2 as our predicted label at time 1 is 0

Time	$\mathbf{- 1}$	$\mathbf{0}$	$\mathbf{- 1}$	Predicted	Threshold	Position
1	0.253	0.479	0.266	0	Yes	No
2	0.301	0.269	0.428	-1	Yes	Sell
3	0.358	0.303	0.337	1	No	No
Table: Likelihood of our random forest model						

Trading Strategy - Calculating Profit

- Once we open a position, we will close it in the next time step
- For example, total profit of the positions in the following table is $0+$ $(-0.02)+0.04=0.02$

Time	Bid	Ask	Upward	Downward	Position	Profit
1	207.29	207.32	-0.07	-0.02	0	0
2	207.25	207.27	-0.01	0.02	-1	-0.02
3	207.26	207.27	0.04	0.08	1	0.04

Results

- As the threshold increases, the number of total positions decreases

Results

- Accuracy is measured as follows. If we our position is 1 , and the true label is either 1 or 0 , then we say it is accurate and vice versa for -1 .
- As the threshold increases, the accuracy also increases as well

Results

- As the threshold increases, the profit also increases as well

Next Steps

- Tuning Hyperparameters e.g. Max Depth, Number of Trees in Random Forest, Threshold etc.
- Try different prediction models such as SVM, Regression, Time Series
- Running the strategy using the simulator

