MS&E 448 Midterm Presentation High Frequency Algorithmic Trading

Francis Choi George Preudhomme Nopphon Siranart Roger Song Daniel Wright

Stanford University

May 9, 2017

Overview

- 1 Introduction Order Book Dynamics
- 2 Model Architecture
- Machine Learning Algorithm
 - Random Forest
- Data
 - Features
 - Label
- 6 Results

Order Book and Message book

Message book

	Message oook				
	Time(sec)	Price(\$)	Volume	Event Type	Direction
k-1	34203.011926972	585.68	18	execution	ask
\boldsymbol{k}	34203.011926973	585.69	16	execution	ask
k+4	34203.011988208	585.74	18	cancellation	ask
k+5	34203.011990228	585.75	4	cancellation	ask
k+8	34203.012050158	585.70	66	execution	bid
k+9	34203.012287906	585.45	18	submission	bid
k+10	34203.089491920	586.68	18	submission	ask

Order book

	Order	book											
	Ask	1	Bid.		Ask	2	Bid ²	2	Ask	3	Bid ³	3	
	Price	Vol.	Price	Vol.	Price	Vol.	Price	Vol.	Price	Vol.	Price	Vol.	
k-1	585.69	16	585.44	167	585.71	118	585.40	50	585.72	2	585.38	22	
k	585.71	118	585.44	167	585.72	2	585.40	50	585.74	18	585.38	22	
k+4	585.71	118	585.70	66	585.72	2	585.44	167	585.75	4	585.40	50	
k + 5	585.71	118	585.70	66	585.72	2	585.44	167	585.80	100	585.40	50	
					•••								
k + 8	585.71	100	585.44	167	585.80	100	585.40	50	585.81	100	585.38	22	
k+9	585.71	100	585.45	18	585.80	100	585.44	167	585.81	100	585.40	50	
k + 10	585.68	18	585.45	18	585.71	100	585.44	167	585.80	100	585.40	50	

Architecture of Our Model Framework

Random Forest

Data Summary

- IVV Stock Prices in Year 2015 containing 89,869 datapoints.
- Minute-by-minute (Except beginning/End of trading days)
- We used the first 80% for Training Set and the last 20% for Test Set

Features

D : 0.	D (: 1 1 . 1 . 1
Basic Set	$Description(i = level\ index)$
$v_1 = \{P_i^{ask}, V_i^{ask}, P_i^{bid}, V_i^{bid}\}_{i=1}^n,$	price and volume(n levels)
Time-insensitive Set	Description(i = level index)
$v_2 = \{ (P_i^{ask} - P_i^{bid}), (P_i^{ask} + P_i^{bid})/2 \}_{i=1}^n,$	bid-ask spreads and mid-prices
$v_3 = \{ \max P_i^{ask} - \min P_i^{ask}, \ \max P_i^{bid} - \min P_i^{bid} \}_{i=1}^n,$	max-min price differences
$v_4 = \{ \frac{1}{n} \sum_{i=1}^n P_i^{ask}, \ \frac{1}{n} \sum_{i=1}^n P_i^{bid}, \ \frac{1}{n} \sum_{i=1}^n V_i^{ask}, \ \frac{1}{n} \sum_{i=1}^n V_i^{bid} \},$	mean prices and volumes
$v_5 = \{\sum_{i=1}^n (P_i^{ask} - P_i^{bid}), \sum_{i=1}^n (V_i^{ask} - V_i^{bid})\},$	accumulated differences
	1

Time-sensitive Set	Description(i = level index)
$v_6 = \{dP_i^{ask}/dt, dP_i^{bid}/dt, dV_i^{ask}/dt, dV_i^{bid}/dt\}_{i=1}^n,$	price and volume derivatives
$v_7 = \{\lambda^{la}_{\Delta t}, \ \lambda^{lb}_{\Delta t}, \ \lambda^{ma}_{\Delta t}, \ \lambda^{mb}_{\Delta t}, \ \lambda^{ca}_{\Delta t}, \ \lambda^{cb}_{\Delta t} \ \}$	average intensity of each type
$v_8 = \{1_{\{\lambda_{\Delta t}^{la}>\lambda_{\Delta T}^{la}\}}, 1_{\{\lambda_{\Delta t}^{lb}>\lambda_{\Delta T}^{lb}\}}, 1_{\{\lambda_{\Delta t}^{ma}>\lambda_{\Delta T}^{ma}\}}, 1_{\{\lambda_{\Delta t}^{mb}>\lambda_{\Delta T}^{mb}\}}\},$	relative intensity indicators
$v_9 = \{d\lambda^{ma}/dt, \ d\lambda^{lb}/dt, \ d\lambda^{mb}/dt, \ d\lambda^{la}/dt\},$	accelerations(market/limit)

Label

- Originally, binary classification (mid-price change)
- Changed to three-way classification (spread crossing)

Time	Bid	Ask	Upward	Downward	Label
1	207.29	207.32	-0.07	-0.02	-1
2	207.25	207.27	-0.01	0.02	0
3	207.26	207.27	0.04	0.08	1

Table: Labels using Upward cross and Downward Cross

• Our data: 26,105 ups (+1), 37,870 zeros (0), 25,894 downs (-1) - Evenly distributed

Key Observations

- We notice that those features in the lower levels are more important than those higher ones
- Volume and number of orders are the most significant features

Ranking	Features	Score
1	bids size 1	0.010127
2	asks size 2	0.010027
3	asks nord 0	0.010024
4	asks size 1	0.009959
5	bids nord 3	0.009956
6	asks nord 3	0.009895

- Out of 17,973 entries, there are 1,947 ups (+1), 14,715 zeros (0),
 1,311 downs (-1) in our predicted labels biased towards zero
- Below shows the confusion matrix

		Prediction				
		1	0	-1		
Ч	1	420	4063	543		
Truth	0	503	6579	829		
-	-1	388	4073	575		

Table: Confusion Matrix of the Predictions

Not good enough !! ⇒ Set the threshold

Trading Strategy

- Consider likelihoods that model predicts for each new data point
- If the highest likelihood is -1 or 1 and that likelihood is sufficiently large enough (above our threshold), then trade in that direction
- For example, if the threshold = 0.40, only time 1 and time 2 have the likelihood above the threshold. However, we only open position at time 2 as our predicted label at time 1 is 0

Time	-1	0	-1	Predicted	Threshold	Position
1	0.253	0.479	0.266	0	Yes	No
2	0.301	0.269	0.428	-1	Yes	Sell
3	0.358	0.303	0.337	1	No	No

Table: Likelihood of our random forest model

Trading Strategy - Calculating Profit

- Once we open a position, we will close it in the next time step
- For example, total profit of the positions in the following table is 0 + (-0.02) + 0.04 = 0.02

Time	Bid	Ask	Upward	Downward	Position	Profit
1	207.29	207.32	-0.07	-0.02	0	0
2	207.25	207.27	-0.01	0.02	-1	-0.02
3	207.26	207.27	0.04	0.08	1	0.04

• As the threshold increases, the number of total positions decreases

- Accuracy is measured as follows. If we our position is 1, and the true label is either 1 or 0, then we say it is accurate and vice versa for -1.
- As the threshold increases, the accuracy also increases as well

As the threshold increases, the profit also increases as well

Next Steps

- Tuning Hyperparameters e.g. Max Depth, Number of Trees in Random Forest, Threshold etc.
- Try different prediction models such as SVM, Regression, Time Series
- Running the strategy using the simulator