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Overview

Review our strategy and progress from the midterm

Changes in Data Processing

Changes to Models

Strategy and Simulations

Results

Evaluation and Next Steps
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Recall from the Midterm

Goal: Next-minute price movement prediction based on order book
dynamics

Data: Minute-by-Minute consolidated book for S&P 500 ETF (IVV)

Model: Random Forest three-way classifier

Labels: Mid-price changes and spread-crossing

Trading Strategy: Accumulating positions and closing them out at
the end of the day

Results: Still not generated profit
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After the Midterm

Data Processing

Changing the data from minute by minute to second by second

Change from three-way classification to binary classification (no
longer using spread crossing label)

Train and test on a rolling window basis - 2 weeks training period
prior to each day
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Data (Example)
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After the Midterm

New Labels

AREA
Time-weighed PnL over the next period (area under the price
movement curve)

VWAP
Volume-weighted average price (VWAP) based on inner bid and ask.
Whether it goes up or down in the window.
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After the Midterm

Adding new features

Bid-Ask Volume Imbalance Quantity indicating the number of
shares at the bid minus the number of shares at the ask in the current
order book.

VWAP A variation on mid-price where the average of the bid and ask
prices is weighted according to their inverse volume.

Second Order Derivatives Expand feature universe to encompass
multiple time periods.
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Model

Logistic Regression

Outputs probability (how confident we are) on each trade

Advantages over random forest: it trains much faster, the coefficients
have an interpretation
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Model

Random Forest

Again, outputs probability (how confident we are) on each trade

One key advantage over logistic regression - doesn’t assume any
functional form and slightly higher accuracy
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Strategy

Train the model on a rolling backwards window.

At each second, use the model to arrive at a prediction with a
probability estimate.

If the probability estimate is above the threshold, make the predicted
trade with the size weighted accordingly

Close out the trade at the end of the trading window.
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Thesys Simulator

Here is what we think it looks like
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Thesys Simulator

Here is what it actually looks like
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Thesys Simulator

Very frustrating and very slow

We decided to just pull the data
from Thesys and do the
simulations manually.
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Results

We choose 10 stocks and ETFs to test our trading strategies, chosen
based on liquidity

These include XLF, CSCO, EEM, IVV, IWM, QQQ, UVXY, VXX,
XLE, SPY

Training Period - 2 weeks from 01/05/2015 - 01/16/2015

Test Period - 2 weeks from 01/19/2015 - 01/30/2015

We use PnL per trade as a performance metric
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Tuning Parameters

Figure: Heat map of accuracy for different decay and window length parameters
(Left) XLE (Right) XLF
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Accuracy of Model: Logistic Regression

Figure: Prediction accuracy vs prediction threshold for the logistic regression
model
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Accuracy of Model: Random Forest

Figure: Prediction accuracy vs prediction threshold for the random forest model.
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Accuracy of Model: Difference

Overall, Random Forest has slightly better accuracy across threshold
values.

Figure: Prediction accuracy RF - LR vs prediction threshold.
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Cumulative PnL (XLF)

PnL stably increasing throughout the day - High Sharpe Ratio !!

Figure: Cumulative PnL within a day
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Trading PnL (XLF)

Logistic Regression with VWAP label performs best in this case

Figure: PnL per Trade vs prediction threshold for each algorithm and label
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Trading PnL (XLF)

Tuning hyperparameters improves the model significantly

Figure: PnL per Trade vs prediction threshold for different hyperparameters
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Trading PnL (MSFT)

Random Forest with AREA label performs best for MSFT

Figure: PnL per Trade vs prediction threshold for each algorithm and label
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Trading PnL (MSFT)

A combination of non-optimal hyperparameters, models and labels
performs poorly.

Figure: PnL per Trade vs prediction threshold for different hyperparameters
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Multiple Stocks

Random Forest with AREA labels. Window = 15, decay = 0.8

Figure: PnL per Trade vs prediction threshold for different stocks
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Multiple Stocks

Logistic Regression with AREA labels. Window = 15, decay = 0.8

Figure: PnL per Trade vs prediction threshold for different stocks
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Evaluating Our Strategy

Strengths:

High accuracy rates: model is doing a good job

High PnL per trade with small variance especially when training on a
longer period of time

The model can be generalized to multiple stocks/ETFs

Perform well even in tumultuous historical periods and on
hypothetical scenarios

Limitations:

Have to tune hyperparameters for each stock

High prediction accuracy does not always mean profit: label isn’t
exactly a prediction of PnL

Interpretability of the model
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Future Work and Areas for Improvement

Within 10 weeks, we can’t make the perfect trading strategy: there is
still a lot we could improve.

Some ideas for further work:

Training on a longer period of time
More sophisticated features: right now we only use the order book
data, could try including external features (such as an index like the
VIX, or data on correlated securities, etc.)
Converting to a strategy that trades at bid and ask (rather than
midprice)
Modifying strategy to handle scaled-up trade quantities
Risk Management
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Conclusion

Idea: use machine learning techniques on the order book to make
price movement predictions. Trade on these predictions to make $$$

Models: Random forest, logistic regression

Data: Second-by-second orderbook data from Thesys

Calibrated trading frequency, prediction label, hyperparameters of
models

Performed simulations on historical data

Promising results that can be built upon
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Conclusion

The End

Questions?
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