MS&E 448 Final Presentation High Frequency Algorithmic Trading

Francis Choi George Preudhomme Nopphon Siranart Roger Song Daniel Wright

Stanford University

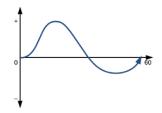
June 6, 2017

- Review our strategy and progress from the midterm
- Changes in Data Processing
- Changes to Models
- Strategy and Simulations
- Results
- Evaluation and Next Steps

- **Goal:** Next-minute price movement prediction based on order book dynamics
- Data: Minute-by-Minute consolidated book for S&P 500 ETF (IVV)
- Model: Random Forest three-way classifier
- Labels: Mid-price changes and spread-crossing
- **Trading Strategy:** Accumulating positions and closing them out at the end of the day
- Results: Still not generated profit

Data Processing

- Changing the data from minute by minute to second by second
- Change from three-way classification to binary classification (no longer using spread crossing label)
- Train and test on a rolling window basis 2 weeks training period prior to each day


Data (Example)

) 🖤	https://educa	ition.thesyst	ch.com/notebool	//user/nsiranart/n	iotebooks/Gettir	ngData.ipynb					C	合自	9	•	n (10	-
	💭 jupyte	jupyter GettingData Last Checkpoint: Yesterday at 3:35 PM (unsaved changes)							Contro	l Panel	Lo	gout					
	File Edit								Python 2 O								
	8 + %	26	↑ ↓ H I	C Code	• a	B CellToolba	r										
	In [58]: df[['	asks nord 0'	, 'asks pric	e 0','asks	size 0', '	bids nord 0	', 'bids pr	rice_0', 'bio	is size 0']]							
	Out[58]			asks price 0					1								
		0	12	208180000	3800	2	208150000	600									
		1	3	208180000	800	3	208160000	700									
		2	3	208180000	800	2	208160000	600									
		3	4	208180000	1200	1	208160000	200									
		4	2	208170000	300	8	208160000	900									
		5	2	208150000	300	1	208140000	200									
		6	1	208150000	200	1	208140000	200									
		7	4	208150000	800	6	208140000	800									
		8	3	208150000	400	5	208140000	700									
		9	4	208150000	800	1	208130000	200									
		10	4	208150000	800	12	208120000	4603									
		11	4	208150000	800	1	208130000	200									
		12	4	208150000	800	1	208130000	200									
		13	5	208150000	1000	1	208130000	200									
		14	4	208150000	800	1	208130000	200									
		15	5	208150000	1000	1	208130000	200	1								
		16	8	208150000	1300	1	208130000	200	1								
		17	9	208150000	1500	9	208120000	2503	1								

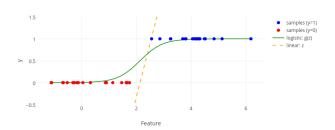
・ロト ・日本・ ・ 日本

New Labels

- AREA
 - Time-weighed PnL over the next period (area under the price movement curve)

VWAP

- Volume-weighted average price (VWAP) based on inner bid and ask.
- Whether it goes up or down in the window.

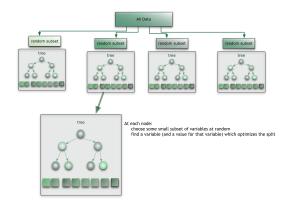

Adding new features

- **Bid-Ask Volume Imbalance** Quantity indicating the number of shares at the bid minus the number of shares at the ask in the current order book.
- **VWAP** A variation on mid-price where the average of the bid and ask prices is weighted according to their inverse volume.
- Second Order Derivatives Expand feature universe to encompass multiple time periods.

Model

Logistic Regression

- Outputs probability (how confident we are) on each trade
- Advantages over random forest: it trains much faster, the coefficients have an interpretation



Logistic Regression: 1 Feature

Model

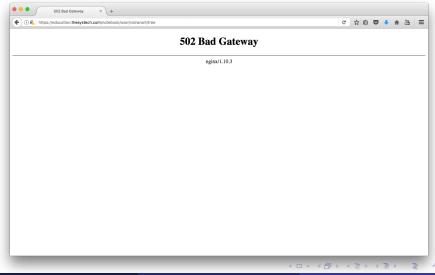
Random Forest


- Again, outputs probability (how confident we are) on each trade
- One key advantage over logistic regression doesn't assume any functional form and slightly higher accuracy

- Train the model on a rolling backwards window.
- At each second, use the model to arrive at a prediction with a probability estimate.
- If the probability estimate is above the threshold, make the predicted trade with the size weighted accordingly
- Close out the trade at the end of the trading window.

Thesys Simulator

Here is what we think it looks like



High-Frequency Trading

MS&E448

Thesys Simulator

Here is what it actually looks like

- Very frustrating and very slow
- We decided to just pull the data from Thesys and do the simulations manually.

- We choose 10 stocks and ETFs to test our trading strategies, chosen based on liquidity
- These include XLF, CSCO, EEM, IVV, IWM, QQQ, UVXY, VXX, XLE, SPY
- Training Period 2 weeks from 01/05/2015 01/16/2015
- Test Period 2 weeks from 01/19/2015 01/30/2015
- We use PnL per trade as a performance metric

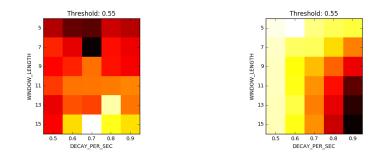


Figure: Heat map of accuracy for different decay and window length parameters (Left) XLE (Right) XLF

Accuracy of Model: Logistic Regression

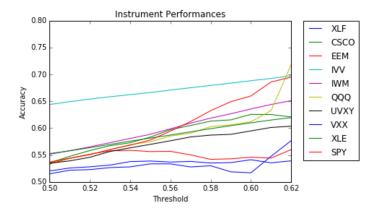


Figure: Prediction accuracy vs prediction threshold for the logistic regression model

Accuracy of Model: Random Forest

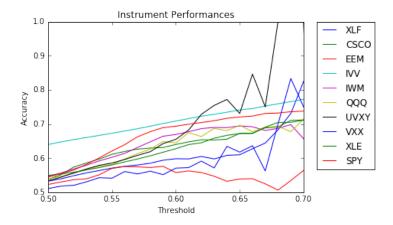


Figure: Prediction accuracy vs prediction threshold for the random forest model.

Accuracy of Model: Difference

Overall, Random Forest has slightly better accuracy across threshold values.

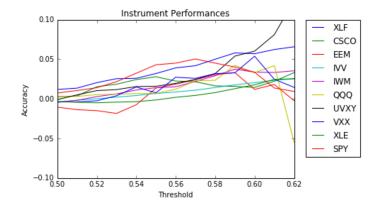


Figure: Prediction accuracy RF - LR vs prediction threshold.

equency

Cumulative PnL (XLF)

PnL stably increasing throughout the day - High Sharpe Ratio !!

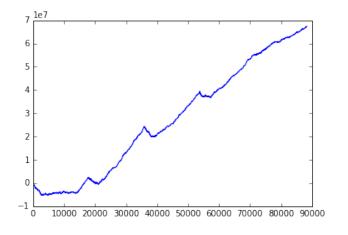


Figure: Cumulative PnL within a day

Trading PnL (XLF)

Logistic Regression with VWAP label performs best in this case

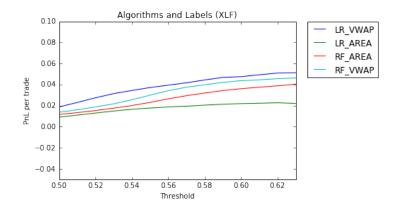


Figure: PnL per Trade vs prediction threshold for each algorithm and label

Trading PnL (XLF)

Tuning hyperparameters improves the model significantly

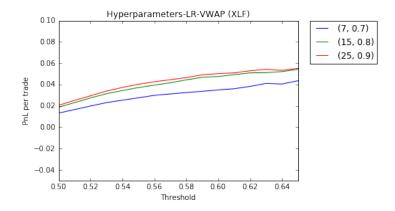


Figure: PnL per Trade vs prediction threshold for different hyperparameters

-Freque	

Trading PnL (MSFT)

Random Forest with AREA label performs best for MSFT

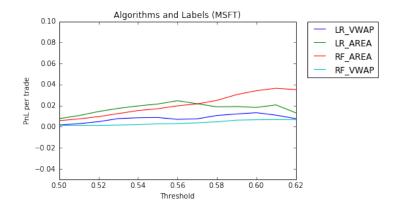


Figure: PnL per Trade vs prediction threshold for each algorithm and label

Trading PnL (MSFT)

A combination of non-optimal hyperparameters, models and labels performs poorly.

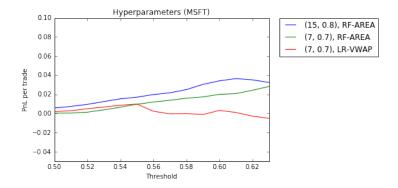


Figure: PnL per Trade vs prediction threshold for different hyperparameters

Random Forest with AREA labels. Window = 15, decay = 0.8

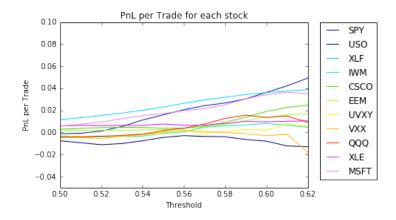


Figure: PnL per Trade vs prediction threshold for different stocks

Logistic Regression with AREA labels. Window = 15, decay = 0.8

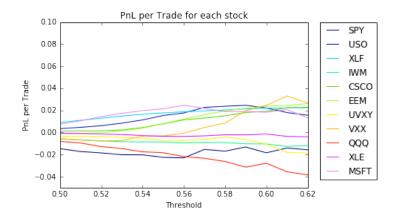


Figure: PnL per Trade vs prediction threshold for different stocks

Strengths:

- High accuracy rates: model is doing a good job
- High PnL per trade with small variance especially when training on a longer period of time
- The model can be generalized to multiple stocks/ETFs
- Perform well even in tumultuous historical periods and on hypothetical scenarios

Limitations:

- Have to tune hyperparameters for each stock
- High prediction accuracy does not always mean profit: label isn't exactly a prediction of PnL
- Interpretability of the model

- Within 10 weeks, we can't make the perfect trading strategy: there is still a lot we could improve.
- Some ideas for further work:
 - Training on a longer period of time
 - More sophisticated features: right now we only use the order book data, could try including external features (such as an index like the VIX, or data on correlated securities, etc.)
 - Converting to a strategy that trades at bid and ask (rather than midprice)
 - Modifying strategy to handle scaled-up trade quantities
 - Risk Management

- Idea: use machine learning techniques on the order book to make price movement predictions. Trade on these predictions to make \$\$\$
- Models: Random forest, logistic regression
- Data: Second-by-second orderbook data from Thesys
- Calibrated trading frequency, prediction label, hyperparameters of models
- Performed simulations on historical data
- Promising results that can be built upon

The End

Questions?