
A Survey of High-Frequency Trading
Strategies

Brandon Beckhardt1, David Frankl2, Charles Lu3, and Michael
Wang4

1beb619@stanford.edu
2dfrankl@stanford.edu

3charleslu@stanford.edu
4mkwang@stanford.edu

June 6, 2016

Abstract

We survey and implement a number of known high frequency trad-
ing strategies. These strategies take advantages of Thesys high fre-
quency data and attempt to trade intraday from frequencies ranging
from milliseconds to minutes, some utilizing machine learning tech-
niques. While discussing and implementing these strategies was in-
sightful, we fail to make significant profit after accounting for transac-
tion costs. That is not to say these strategies do not work in general.
We also hope to elucidate where our strategies fall short and where to
improve them.

0BB contributed the correlation model strategy. DF contributed the ETF statistical
arbitrage strategy. CL contributed the order book pressure strategy. MW contributed
the automated technical strategy search and intelligent market making algorithm. We
thank Lisa Borland and Enzo Busseti for all the insightful discussions and trading ideas.
We would also like to thank Artem Vasilyev for contributing his deep insight on ”recur-
rent neural networks” and ”locality sensitive hashing” for instantaneous exchange latency
arbitrage. Finally, Thesys provided the equity data.

1

1 Introduction

In this paper, we will present five different high frequency trading strategies
that we researched and implemented using Thesys data and platform. The
strategies are diverse in nature and attempt to capitalize on independent
sources of alpha. So, our original intent was to combine such independent
predictors into one ensemble trading strategy. However, in our case, a full
ensemble proves to be needlessly complex. Alternatively, we can propose to
combine our strategies (once they are tuned and profitable) with Markowitz
portfolio optimization.

As a result, we decided to individual research and implement five strate-
gies. The first is a method to search for and identify profitable technical
analysis strategies that do not overfit. Next, we attempt to statistically ar-
bitrage highly correlated index tracking ETFs. In a similar vein, another
strategy models correlation between assets and attempts to profit off asset
divergence. Fourth, a strategy to predict price movements from order book
pressure dynamics tuned with machine learning techniques manages to turn
a profit. Finally, we have an intelligent market making strategy that places
its quotes based on a machine learning algorithm trained on order book dy-
namics.

2 Data and Methods

Since Thesys only provides equity data, our universe of assets are limited to
stocks. We choose equities listed on SP500, NASDAQ, and NYSE because
they are liquid to facilitate high frequency trading. Code and simulations are
run within Thesys’s platform, which is hosted on a Jupyter notebook. We
utilized Python packages such as Pandas, NumPy, and scikit-learn for our
quantitative analysis.

3 Strategy 1: Automated Technical Strategy

Search

3.1 Background

This ”strategy” is less of an algorithmic per se but rather a technique for
finding profitable technical analysis strategies, which can then be turned
into algorithms. The goal is to define a strategy space - a set of a certain

2

enumerable strategy type - and search over that space, selecting only the
most profitable for trading.

With a naive approach, the primary issue is overfitting. Since we only
have historical data with which to search (and select our strategies from),
it is possible and indeed highly probable that we select spurious technical
analysis signals that look like they have predictive power but perform quite
poorly out of sample. In real world trading, this issue becomes a strong
concern for technical traders, who psychologically believe they identify prof-
itable patterns on historical data, but rack up huge losses when using the
same patterns on forward trading. To mitigate this concern, we seek to find
a way to systematically address the issue of overfitting.

This technique was inspired by that of a hedge fund manager Jaffray
Woodriff of Quantitative Investment Management.[7] While not much is ex-
tensively known about his specific technique, it is know that Woodriff em-
ploys random time series in searching for technical analysis strategies and
that he combines his technical predictors into an ensemble.[6] Additional
help was obtained through a blog post attempting to replicate Woodriff’s
methods. We extend their work on lower frequency daily data to high fre-
quency tick and order book data.

3.2 Benchmarking on Random Data

To this end, we come up with the approach to benchmark the strategies in our
strategies against their performance on random time series data. The goal
we have in mind is to select the highest returning strategies in our strategy
space that aren’t overfit or due to random noise. On random data, we try
the strategies on our strategy space and achieve some baseline returns. Since
the underlying time series are random, we know even the best performing of
these strategies have zero alpha.

So when we run the same strategies on real time series data, the ones
here that outperform those on random data will have positive alpha. From
this, we conclude that these top performers on real data that beat those on
fake data turn significant profit as to be not overfit or due to random noise.

3.3 Generating Realistic Random Time Series

The insight here was to employ the bootstrap, a statistical technique for
sampling with replacement.

First, we obtain a day’s worth of tick data (bid and ask quotes) for a
single stock of interest in our universe. This leads to around one million
different tick events which include all changes at the inside order book. For

3

computation simplicity, we then compute each tick’s price change as an ab-
solute difference (assumed due to the fine granularity of the returns) in mid
market price.

Next, we use the full day’s mid market price changes and the time between
each tick to produce two empirical probability distribution functions (PDFs).
So, we come up with an algorithm to generate and simulated random walk.

First, initialize t = 0 and first price p0 randomly within some bounds
and have a list of trade times as vector T . Furthermore have a list of prices
P . While t ≤ end of day, draw a time change tδ from the PDF and a price
change pδ. Store these into the vectors: T+ = tprev + tδ, and P+ = pprev +pδ.
Here + = denotes the append to vector operation.

When this finishes, we will have a random walk for a day’s worth of ticks
and corresponding prices modeling on the empirically observed price changes
and trade times during the day. In essence, we have shaken up the original
day’s events on two axes: the price and time. This procedure allows us to
rapidly generate realistic looking random price time series.

In apply this procedure, there’s the tacit assumption that ticks are IID,
which may not be a perfect assumption. One can imagine that the infor-
mation gleamed from one tick and order would affect subsequent trades
also, thereby violating our assumption. More concretely, this assumption
makes the produced random time series (which still realistic looking) have
less volatility clustering as expected. However, we believe this to not affect
the procedure as a whole. Because we are not doing any learning or fitting
on the random data itself, we believe this assumption to be a minor flaw.

This real series of real AAPL on 2015-01-21 becomes transformed into

4

3.4 Results on Strategy Space of 4 Tick Price Action

We will now demonstrate the technique on a sample strategy space of all price
action strategies of 4 ticks, looking at the sign of the price change within 4
events. We arbitrary impose a holding time of 200ms (but this could be a
parameter to tune). The strategy looks like

We simply brute force over all possible strategies. There are 2 ∗ 34 of
these, since there are three outcomes at each tick −1, 0, 1 (down, neutral,
and up) and two resulting actions: buy and short.

The most profitable strategy on fake data performed at a profit of 2083
microdollars per trade whereas the most profitable strategy (a downward
momentum strategy!) profited 3461 microdollars per trade. So, our technique
posits that this downward momentum technical analysis strategy is predictive
out of sample.

If all the strategy are plotted on their profitability as so:

we see the green line (strategies on real data) outperform those on fake

5

data (blue line) so the difference is presumed alpha.

3.5 Discussion

This technique looks promising though not necessarily on high frequency
data. First, technical analysis has an ambiguous underlying mechanism in
the high frequency space; it is premised on behavior inefficiencies leading to
price patterns, but when trades are dictated by algorithms and computers,
do those same patterns have meaning? Additionally, trading on high fre-
quency data requires aggressive trading, often crossing the spread to input
market orders, wiping out the 3046 microdollar/trade profit we attained in
the sample strategy.

There are also problems with computation intractability associated with
are search strategy. Right now, we are simply brute forcing and trying ev-
ery possible permutation. Obviously, this will require exponentially more
computing power as we increase the complexity of our strategy space. One
possible iteration include a more intelligent search mechanism such as genetic
algorithms.

4 Strategy 2: Exploiting Correlation

4.1 Background

Finding assets that are correlated in some way, building a mathematical
model for this correlation, then trading based off of that correlation is com-
mon practice in many different trading strategies. We implemented a trading
strategy that finds the correlation between two (or more) assets and trades if
there is a strong deviation from this correlation, in a high frequency setting.
The inspiration for this strategy came from the article Online Algorithms in
High-frequency Trading The challenges faced by competing HFT algorithms,
written by Jacob Loveless, Sasha Stoikov, and Rolf Waeber.

4.2 Algorithm

To create a model representing the correlation between assets, we imple-
mented an exponentially weighted linear regression. This linear regression is
meant to model the linear relationship between the asset we are looking to
trade Y and the component assets X we are using to find this relationship.
The resulting linear combination will be of the form:

Y = βX + ε (1)

6

Y is a vector of points representing the assets price, X is a m× n+ 1 matrix
where m is the number of price points we are evaluating and n is the number
of assets we’re using to estimate Y . The first column of X is the intercept
term. ε is a vector representing the difference in prices needed to exactly
model Y . Since our assumptions for trading are based on the difference
between our estimate and the actual asset price, we are acutally not using ε,
so our resulting algorithm is

Estimated Y = βX (2)

β is calculated using
(XTWX)−1(XTWY) (3)

where Y represents the actual price points of the asset we are looking to
trade. W is a diagonal matrix that is responsible for exponentially weighting
our linear regression. In order to create our weighting scheme, we chose an
alpha between 0 and 1 and populate the diagonal matrix using
W [time step][time step] = αtotal time steps−time step−1. Note that there are faster
ways to compute an exponentially weighted linear regression, as noted in the
ACM article mentioned in the background section above, however for this
project we choose to calculate the regression this way due to its simple im-
plementation.

4.3 The Exploit

Once you can model the correlation between asset prices and find the ”line
of best fit” between the two, many options become available based on the
assumptions that are made. The main assumption we based our algorithm
from is that the asset we are trading, Y, will closely follow our regression,
Estimated Y, if Y is highly correlated with the assets that are used to create
the regression. Under this assumption, if we see the price of Y deviating
from the price of Estimated Y, we assume that there will be a convergence
in the near future. An example of this expected convergence can be found
in the figure below:

7

This chart represents Exxon Mobile (XOM) vs a regression between Exxon
Mobile and Chevron Corporation (CVX). Unfortunately, most assets (in-
cluding these two) generally don’t follow such a mean-reverting correlation,
however this example taken from March 25th, 2015 highlights a trend we
hoped to exploit.
Our general approach for trading can be found below:

This approach buys when it sees a far divergence of the asset price down-
ward relative to the regression price, and sells when there is a high divergence
upward. The algorithm sells all assets that were most recently bought when
the asset has almost reverted to the regression price (while moving upwards),
and covers the sold assets when reverting downwards toward the regression
price. It is important to note that we only ”Sell Bought Assets” when we are

8

reverting to the regression from below the regression (in other words moving
up in price), and only ”Cover Sold Assets” when reverting to the regression
from above the regression (in other words moving down in price). Covering
sold assets consists of buying back the assets we just sold, which simulates
covering a short. We added a ”Do Nothing” threshold because we found
there was a lot of trades being executed with resulting profits that were too
small to cover the bid-ask spread. The thresholds for determining when to
trade will be discussed in the ”Parameter Tuning” section.

This exploit can be used with many different approaches. Some of the
approaches we looked at were:

• Pairs Trading - this consists of trading between based on divergence and
convergence of two highly correlated assets. Many times, algorithms
will trade both assets in opposite fashions (sell one, buy the other and
vice versa) however during the 10 weeks we were only able to focus on
selling just one of the assets.

• Basket Trading - this consists of tracking a regression based on an asset
and all of its underlying assets. If we see a difference in the regression
based on an underlying assets vs the index fund (for example DIA),
then we trade assuming the fund will revert back to the regression.

• Trading ETFs based from the same index - For example trading SPY
based on a regression RSP RWL RBP, which are all ETFs based on
the S&P500 index.

4.4 Parameter Tuning

The parameters to be tuned for this algorithm are:

• The amount to weight old data (α). The amount by which to weight
the data is a value between 0 and 1 exclusive (1 would be weighting
everything the same). Our results showed that the closer to 1, the
better. Most of the time we used .9999 as our α.

• The threshold at which to execute a trade (Buy or Sell). This is one
of the most important parameters to tune and we still feel a lot more
exploration needs to go into determining this value. To start, we used
an exponentially weighted average of the difference between Y and the
Estimated Y (using the same α) over the data we trained on. We real-
ized that just using the exponentially weighted average didn’t produce
as many trades as we hoped for at certain time period, so we generally
divided the value by 1.2 or 1.6 in order to execute more trades.

9

• The threshold at which to cover a trade. At this point we have just
divide whatever value our threshold to execute a trade is by 2, so
that we can create the ”Do Nothing” space. Again, this value should
be tuned further but we found promising results with these starting
points.

• Amount to trade. We only traded in sizes of 100 shares, however it
would be prudent to base the amount traded on some measure of cer-
tainty. This could be the distance by which the price of Y deviates
from Estimated Y, however it is not as simple as trading more when
the price differs further. There is an upper bound at which we’d want
to trade for many reasons, one of them being the presence of a potential
sweep, which may alter the price of one asset for an extended period of
time. In this case we wouldn’t want to trade at all, even with strong
signals of deviation.

• The amount of data to train on. This amount varied by the time
interval we were using, primarily due to the time it takes perform com-
putations on the data. When operating on a time interval of 1 seconds,
we generally used 2-4 hours of data to train on. When operating on
the timescale of 100000 microseconds (1/10 of a second), we tried to
cut the amount of time to train the data proportionally.

• The time interval at which to operate on. As mentioned above, the
time interval to operate on was based on a trade off between a more
reactive trading system and one that operates on a broader scope on
data, due to the time constraints. We chose to operate on a timescale
of 1 seconds because it seemed to be a good balance of the two.

• The assets to trade. We looked at many different assets to trade, most
of which we chose because they were highly correlated at some point in
time. Some examples of assets we traded were (trading the first asset)
XOM vs CVX, GOOG vs. GOOGL, SPY vs. RSP RWL PBP, DIA vs
underlying assets.

4.5 Results

The most promising result we got using the strategy is below:

10

These results took place on March 19th, 2015 trading SPY with a regres-
sion relative to RSP, RWL, and PBP. The first regression was based on data
from 11:10am to 1:15pm with an interval of 1 second. The algorithm ran
for 600 iterations, at each time step shifting the start and end times to run
the regression up 1 second. In other words, our algorithm started trading
at 1:15pm and ran for 600 seconds (10 minutes). The corresponding prices
were:

At first glance, it is apparent that the stock price went up quite a bit
in the time period we traded, however our algorithm does not operate on
signals based on change in price relative to its own price in the past, it is
comparing its price at a given time step relative to the regression. As you
can see by the prices, the regression was slightly above the price of SPY for
most of the trajectory upward. It is possible the other S&P500 ETFs were
reacting quicker to changes in the index than SPY was, which allowed us to
predict where the price for SPY would move, although there are many other

11

factors that could account for this foresight.
Another positive result using the same ETFs and duration but with the

first regression based on data from 12:20pm to 2:25pm on June 26th, 2015 is
below:

The associated prices were:

Unfortunately, these positive results could not be replicated at will using
these ETFs. Some other results using different dates and the same ETFs can
be found below:

12

13

We also looked at trading the Dow (DIA) vs it’s underlying assets. There
were no positive PNLs from our testing but here’s a result from April 14th,
2015 with two hours of training data and 200 seconds of trading.

14

The above results were using a trading threshold of the exponentially
weighted average of the difference in price between our asset and regression
based on the training data divided by 1.6. In order to make a more strict
threshold for choosing when to execute a trade, we ran another test using a
threshold of exp weighted average difference/1.2, found below:

15

We also tested pairs trading using Exxon Mobile (XOM) and Chevron
Corporation (CVX). One result, which used data from 9:00am-1:00pm March
25th, 2015 with 1000 iterations is found below:

16

A second result, which used data from 11:00am-1:00pm April 20th, 2015
with 1000 iterations is:

17

4.6 Conclusions

Although we were not able to find an algorithm that consistently turned a
profit we were very pleased with these results, which used very naive assump-
tions and relatively little complex math to hedge risk, assess volatility, and
tune assets and parameters. We feel this basic approach to trading has a lot
of potential in many fields if enough time is spent tuning all of the complex
parameters involved and making computation efficient.

5 Strategy 3: Index Fund Arbitrage

5.1 Background

We implement a trading strategy based on the correlation between an ex-
change traded index fund and the stock market index which it tracks.

The first index fund was created in 1970, and index funds have become
increasingly popular with investors who seek the return profile of a stock
market index without owning the individual stocks that make up the stock
market index. The fundamental goal of the index fund manager is to mini-
mize tracking error with respect the underlying index.

Stock market indices are generally categorized as price-weighted or capitalization-
weighted. The value of a price-weighted index, (e.g. Dow Jones Industrial
Average), is computed by summing the value of it’s individual components

PI = c
∑
i

Pi

18

If the price of a certain component changes by ∆pa, then the price of the
tracking index should change by a factor of

∆PI = ∆pa
pa∑
pi

We assume that any deviation from expected change in price of the index
fund is a temporary market inefficiency, and price will converge to the ex-
pected value. By buying the index fund when it is undervalued and selling the
index fund when it is overvalued, a trader can exploit this price discrepancy
for profit.

5.2 Approach

The Dow Jones Industrial Average (DJIA) is a price-weighted index of 30
large-cap stocks that are picked by the S&P Dow Jones Indices LLC on the
basis of reputation, sustained growth, interest to a large number of investors,
and accurately sector representation.

The SPDR Dow Jones Industrial Average ETF (DIA) tracks the DJIA,
with a net asset value of $11.7 billion as of June 2016.

We implement a trading strategy using DJIA and DIA because it the
DJIA is simple to calculate and is composed of a relatively small number of
stocks, and the DIA is large and heavily traded.

The simplest trading strategy is to compare daily returns, and buy DIA
if its percent return on the day is less than DJIA, and sell otherwise. How-
ever, while intraday fluctuations in price are almost always well tracked, a
difference in price often lingers for time scales on the order of minutes to
hours.

To compensate for this we compute a trailing average ratio between DIA
and DJIA. If the current ratio is less than the trailing average, this indicates
that DIA is undervalued, even taking into whatever price discrepancy is
lingering in the market.

The trailing average ratio is computed as follows, for a given number of
ticks n and present time tf

r̄ =
1

n

tf∑
t=tf−n

DIAt
DJIAt

We expect the current ratio to equal the trailing ratio, and thus predict

19

Figure 1: Ratio of DJIA vs. DIA, with trailing average

the price of DIA

r − r̄ = 0

DIA

DJIA
− r̄ = 0

DIA = r̄(DJIA)

By subtracting expected price from current price, we get an estimate for
the near-term price change.

Figure 2: Discrepancy between actual and expected price of DIA (measured
once per second)

Since the DIA tracks the DJIA relatively closely, a lot of the price in-
efficiencies are too small to trade on. We only place orders on the largest
discrepancies in order to maximize the probability of profit. Through exper-
imentation, we converged on a strategy of placing a buy[sell] order for DIA
at the bid[ask] if the current price is $.01 less[more] than the expected price.

As a final optimization, we avoid trading during the beginning of the day
(before 10am), to avoid higher than average volatility.

We plot daily return of DIA vs. return on this strategy (in April 2016),
as implemented in the Thesys simulator:

20

Figure 3: Daily return of DIA vs. our trading strategy, April 2016

5.3 Conclusions

This strategy yields decent returns when the market is relatively flat. Future
work should be done to reduce losses on days with large market changes.

6 Strategy 4: Order Book Pressure

6.1 Background and Literature Review

The limit order book for an asset offers all available information on the prices
and quantities traders are willing to buy and sell an asset for at a snapshot in
time. Utilizing the information presented in the order book, especially over
a time series, gives us valuable insight into market microstructure and may
provide signals into short-term price movements.

The order book pressure strategy we explore in this section is, at its core,
very simple and follows from basic economic principles of supply and demand.
Simply put, if demand (the bid queue) is significantly greater than supply
(the ask queue), we expect the price to increase in the short term, and vice
versa.

This strategy is built on the work presented in a few previous papers.

21

The idea of utilizing insights on market microstructure from the limit order
book in high-frequency trading is explored in Avellaneda et al.[1]. In a later
paper by Avellaneda et al., the use of level-I quotes only is used in a pressure
strategy.[2]. A paper by Lipton et al. in 2013 presents the primary basic
formula we use to evaluate limit order imbalances:

It =
(QB −QA)

(QB +QA)

...where QB is the size of the bid queue and QA is the size of the ask
queue. It is hypothesized that the value of It is correlated to short-term
price changes.[4]

The high-frequency team from the 2015 MS&E 448 class also inves-
tigated an order book pressure strategy. They initially attempted using
machine learning techniques, specifically SVM and decision tree, to make
buy/sell/hold predictions. However, the performance of these techniques,
along with other order book imbalance formulae, was limited compared to
the simple solution proposed in Lipton et al. Therefore, they ended up a
solution which calculated It with 8 levels of the order book at three inter-
vals separated by 7.5 seconds, and using these values to determine a buy/sell
signal.[5]

Our strategy continues the work of Aryan et al. from last year, utilizing
similar ideas of taking multiple snapshots separated by a small interval and
using these It values’ momentum and instantaneous pressure to predict short-
term price movements.

6.2 Signaling Mechanism

We used a similar mechanism as Aryan et al. to surface buy/sell signals; we
simply take 3 snapshots of It separated by t seconds. We then use logic that
ensures that |It| is above a certain threshold, and that the change between
It−2, It−1, and It is sufficient.

The main improvement of our signaling model over that of the 2015 team
is that it appears that many of the hyperparameters chosen in the previ-
ous paper were fairly arbitrary. For instance, they decided on 7.5 seconds
and manually tuned the threshold values at which a signal was generated.
The interplay between the momentum and current pressure indicators also
appeared to be fairly primitive logic. Finally, the method used in the 2015
paper for actually calculating It was unclear; the paper mentioned weighting
bids and asks further from the spread lower, but it is not clear whether this
was used.

22

To demonstrate the significance of various hyperparameters, consider the
difference in hit rates when simply varying the value of t for both intervals:

As such, there were up to 40 values and non-continuous settings that
needed to be optimized for the signaling mechanism alone. These included:

• Number of levels to use in the order book for pressure calculation. Both
a constant number of levels, e.g. l = 8, and a variable number of levels
(depending on percentage difference from best bid/ask) were tried.

• Decay function used to de-weight levels further from best bid/ask. This
was a discrete choice. We attempted choices ranging from no decay,
exponential decay based on level or percentage difference, etc. About
10 functions were tried (each with their own parameters), though this
was not the most scientific. We ended up with an inverse function with
respect to the percentage difference from the best offer. For instance,
on the bid side:

Qb =
L∑
l=0

weight(
1− pl
pbest

)

lorders∑
o=0

qo

weight(d) =
1

γd+ β

23

• Time intervals between It−2, It−1, It.

• Threshold of current pressure at which to generate signal.

• Thresholds of momentum between It−2, It−1, It to generate signal.

• Trade-off between momentum indicators and instantaneous pressure
indicators. Logic here was also non-continuous.

• Weighting between Qb and Qa, as for some decay functions it was im-
balanced.

As can be seen, no off-the-shelf optimization algorithm could optimize
all these hyperparameters, especially considering the discrete choices. As a
result, I implemented from scratch an algorithm which took inspiration from
gradient descent and differential evolution. The algorithm did not scan the
vast majority of the possible parameter space due to computation time and
was not the most scientific, but was quite effective and avoided overfitting
significantly.

6.3 Execution Strategy

The execution strategy was significantly more simple than signaling for two
reasons. First, it would be computationally intractable to attempt to op-
timize too much behavior, due to the extreme slowdown when turning on
execution. Secondly, an early attempt at order execution gave very good
results.

The simple strategy is as follows:

1. When signal is raised, place buy/sell at market price in quantity pro-
portional to signal strength.

2. Place opposite order at 50 basis points’ profit price.

3. Add stop loss at 100 basis points’ difference in other direction.

The parameters of quantity and 50/100 basis points were manually tested to
decent effect, though could be further optimized.

6.4 Results

When trained on an assorted training and validation set of trading days
excluding days used in testing by the 2015 HFT group, and tested on an
assorted held-out test set, of which 50 percent of days were those used by the

24

2015 group, the strategy achieved very good returns (even when paying the
spread). The strategy outperformed all iterations of the 2015 team’s order
book pressure algorithm:

Compared to the performance of the 2015 team’s algorithm, which had
limited tuning of parameters and access to less training data:

25

6.5 Discussion and Further Work

Overall, we were fairly pleased with the results this strategy achieved, as it
was our only strategy which was able to consistently turn a profit without
significant overfitting. It also speaks to how important continuous iteration
upon earlier strategies is, as this strategy initially stemmed from the simple
idea of counting the difference between size of the bid queue and ask queue,
and was then improved upon by the 2015 team. By having access to far
more data and greater ease of prototyping, we were able to further tune and
improve upon the strategy.

That being said, there are some significant holes in the current imple-
mentation. For instance, the hyperparameters were trained to generally be
constant, while it is fully reasonable that the optimal parameters vary among
different assets. For instance, a more heavily traded asset might enjoy a faster
interval time.

As seen in the profit/loss graph above, it is also clear that though the
algorithm generally turns a profit, it is possible to tank as well. More sophisti-
cated execution mechanisms and possibly better tuning of buy/sell thresholds
could be very effective.

26

7 Strategy 6: Intelligent Market Making

7.1 Background

A market making strategy seeks to post both bid and offer quotes hoping to
get filled on the roundtrip in rapid succession, thereby capturing the spread.
The market maker faces both inventory risk (where the price moves before she
can complete a roundtrip) as well as adverse selection (where the counterpart
is more informed) and the she faces losing trades each time. It is believed
that the spread compensates the market maker for these two risks. [3]

As such, our goal is to maximize profit by minimizing these risks. To
do this, we ask: where do we place our bid/ask quotes such that we get
executions while getting the best prices?

There is a tradeoff here. We can post thin quotes (close to the best
bid/ask) and get filled more often or thick quotes (far away) but get less
executions. Additionally, if a very aggressive comes and an eats up a lot of
liquidity on one side of the book, the both the thin and thick quote could get
filled while the thick quote got a better price and attains less risk. Our goal
is to predict where to place our orders to get the latter type of execution.

7.2 Machine Learning Model

To make these predictions, we will utilize a machine learning model - the
random forest. We choose this because it is off the shelf and easy to tune.
We will discuss the disadvantages later.

We aggregate at each execution statistics about the current and previous
2 ticks. These include information about each of the 3 levels of book data
(including spread, weighted midpoints, deltas of the bid/ask quotes at each
level, volumes at each level, rate of recent trades, etc). We end up with
P = 54 features. Our response is the best recently executed price on the bid
and ask side (represented as the delta to the mid price) within 3 ticks. Thus,
we train two separate models: one to predict bids and one to predict asks.
There are about N = 30, 000 training events per day per symbol.

After training a random forest with ntrees = 10 and default parameters
with sci-kit learn on a day of AAPL on 2015-01-21 and running on out of
sample next day data, we have the following models:

27

which we note produces some interesting insights. It knows when to
produce thick quotes far from the bid ask spread, but on average produces
predictions around 3 cents away from the mid. This is in line with typical
market making strategies. Insightfully, the model knows to post wide spreads
at opening auction.

7.3 Trading Rules

Based on the results of the model trading, we turn the model into a trading
strategy and evaluate its performance. To make things easy to test, we train
on the previous trading day’s data and produce both bid and ask prediction
models using the random forest.

During the next day, we stream in the last 3 ticks, featurize the data as
we did when training the data, feed the features into the models and produce
predicted bids and asks. Then, we only trade if the predicted bid is less than
the current best bid (and vice versa for the ask). If we decide to trade, we
immediately send a limit order for the predicted price and update the order
to match our prediction if the market moves. Once the order executes, we
switch sides of the trade. We keep orders to 25 shares to limit market impact.
By immediately switching sides, we attempt to buy on one tick then sell on
the next, a very risk adverse strategy.

28

7.4 Results

A graph of results for trading over 30 minutss of AAPL on 2015-01-22
with models trained on the previous day’s data is above, which shows it
losing a lot of money.

We believe the trading strategy is losing money due to its intense risk
aversion. By attempting to buy on one tick and sell the next tick, it does not
wish to hold any inventory at all. If the price moves down, we would like to
accumulate a long inventory, and getting better and better prices each time,
believing the price will mean revert. But, the current strategy forgoes this
in favor of selling on the next tick regardless of the price move down!

But, there is reason to believe the model has alpha. Since we are trying to
predict the best execution price (which is guaranteed to be further away from
the mid than the best bid/ask) and we are indeed getting executions, that
means we are getting better prices than a naive marketing maker posting at
the best bid and ask.

7.5 Discussion

The intense risk adversity of the market making strategy makes it unprof-
itable. But, we believe the machine learning models themselves perform well.
To make our market making strategy work, we must also intelligently deal
with inventory risk (perhaps using stochastic models as in current literature).
Currently we have an intelligent way of posting quotes but no smart way of
managing the positions.

Additionally, as with any machine learning model, more fine tuning or
parameters and optimization would help. As always, more and higher quality
features would allow better prediction.

29

Finally, we note that a random forest may not be a tractable model in
practice. Because it is necessary to evaluate many decision trees, it slow to
discover the predicted bid/ask. Market makers must react to information
quickly so this evaluation time is significant. Many of today’s most sophis-
ticated market makers (e.g. Jump Trading, Citadel) use linear regression
(simply evaluating a dot product) for quick prediction for this very reason.
We used a random forest because it is easy to train and gives good accuracy
out of the box.

References

[1] M. Avellaneda and S. Stoikov. High-frequency trading in a limit order
book. Quantitative Finance, 8(3):217–224, 2007.

[2] Reed J. Avellaneda, M. and S. Stoikov. Forecasting prices from level-i
quotes in the presence of hidden liquidity. Algorithmic Finance, 1(1):35–
43, 2011.

[3] Michael Durbin. All About High-Frequency Trading. McGraw-Hill Edu-
cation, New York, 1 edition edition, August 2010.

[4] Pesavento U. Lipton, A. and M.G. Sotiropoulos. Trade arrival dynamics
and quote imbalance in a limit order book. Quantitative Finance, 2013.

[5] Vikram Ramakrishnan Thomas Stephens Omid Aryan, Felix Boyeaux.
High frequency price prediction: Leveraging limit order book momentum
and imbalance. 2015.

[6] QUSMA. Doing the Jaffray Woodriff Thing (Kinda), Part 1, January
2013.

[7] Jack D. Schwager. Stock Market Wizards: Interviews with America’s Top
Stock Traders. HarperBusiness, New York, rev upd edition edition, April
2003.

30

