
Stanford University

MS&E 448

Algorithmic Trading and Big Financial Data

P2P Loan Selection

Team Members:

Andy Feis

Viraj Mehta

Scott Morris

John Solitario

Cameron Van de Graaf

June 4, 2016

Abstract

The peer-to-peer lending industry has grown significantly since its inception
in 2007. With billions in annual loans, there are significant opportunities to
capitalize on this alternative investment instrument. We have developed a
sophisticated investment strategy that utilizes Lending Club Corporation’s
massive historical datasets to understand which features best predict some-
one’s probability of default.

Using these characteristics, we built and tested numerous machine learning
models, including logistic regression, SVM, random forest and other ensem-
ble methods. Our final model with the most accurate results used linear
discriminant analysis (LDA). These models outputted an implied probabil-
ity of default, which we converted to a continuous price using our pricing
model. We were able to deliver 2-3% increases in loan returns over the aver-
age basket loans provided by Lending Club. This yielded a tentative Sharpe
ratio of 3.41.

We then built an execution platform that uses Python scripts to commu-
nicate with Lending Club’s API. The platform allows for automated feature
processing, analysis, and loan acquisition.

1 Project Background

Peer-to-peer lending, often abbreviated P2P lending, is a method of debt fi-
nancing that enables individuals to borrow and lend money - without official
intermediary institutions, such as banks. The modern P2P lending industry
began in the United States in 2006 with the birth of Prosper, followed by
Lending Club and other lending platforms thereafter [4]. As of March 2016,
Lending Club is the largest peer-to-peer lender in the United States with
over $18 billion in total loan issuance to date [3]. Due to data access as well
as loan data sample size, we chose to focus on Lending Club specifically as a
means of understanding the P2P lending market.

Given the turbulence in the market, many investors have looked towards
P2P lending as an alternative investment instrument to achieve returns. The
way Lending Club works is simple: an individual or business seeking a loan

1

completes an application with numerous predictive characteristics to Lending
Club. Lending Club then uses a proprietary algorithm to approve loans and
place the approved loans into “buckets.” These buckets range from A1, A2,
A3...G4, and G5. Essentially, Lending Club assesses a loan’s risk of default
and attempts to place said loan into a corresponding bucket, with A1 being
the most secure loans and G5 being the most risky. Additionally, each bucket
has a corresponding interest rate. Naturally, the A1 loans (which are safest
in Lending Club’s eyes) have the lowest interest rate, 5.32%. A2 loans have a
slightly higher rate of 6.49%, and so on until G5 loans, which have a 30.99%
interest rate.

As an investor, you can either choose to invest in a “basket” of Lending
Club loans or individual loans. If you invest in the basket, Lending Club
takes your principle and divides it up across numerous loans, often filling
only a small part of a loan, to increase diversification and minimize the large
downside risk of a single loan defaulting. Alternatively, you can pick and
choose loans to invest in, which could be beneficial if you believe you have
found a loan whose risk has been assessed incorrectly.

2 Strategy Description

The discrete bucket model that Lending Club and other peer institutions use
was quite intriguing to our group. While we completely understood the need
for varying interest rates depending on the risk of loan default, it seemed
quite arbitrary that there are lines drawn between buckets. Clearly not ev-
ery loan in a bucket, take A2 for example, has exactly the same risk, which
is why assigning them the same rate of interest doesn’t quite make sense.
Moreover, the very best loans in A2 and the very worst loans in A1 are likely
quite similar in risk; however, Lending Club has placed them into different
buckets. This led our group to question why, if two loans are similar, can one
have an interest rate of 5.32% while the other has a 6.49% rate for nearly
the same risk.

We believed that if we could create a continuous model for assessing loan
risk, we could identify the safest loans in each bucket. Thus, we could get
the same interest rate while decreasing our default risk, increasing returns
over the basket approach provided by Lending Club.

2

This strategy required three primary phases: feature selection, modeling
default risk/building a pricing model, and execution. Fortunately, Lending
Club publishes all their historical loan data along with the 100+ character-
istics about the party receiving the loan and the loan status. The first step
of the strategy, feature selection, involved identifying which of the provided
characteristics were most indicative of whether or not a loan would be paid
in full or charged off. The next step, creating the model, required taking
those features and using multiple machine learning techniques to predict a
loan’s risk of default given the features selected in phase one. Lastly, find-
ing and acquiring the loans in real-time requires an execution strategy for
this approach to be scalable. Thus, the last phase of the project was to
build a platform for executing our model and acquiring the newly discovered
desirable loans.

3 Data Cleaning and Processing

Lending Club provides five online, open-access datasets for accepted loans
from 2007-2011, 2012-2013, 2014, 2015, and 2016 Q1 in comma-separated-
values (CSV) format. They also provide four additional datasets for declined
loans from 2007-2011, 2012-2013, 2014, 2015, and 2016 Q1. Each accepted
loan dataset has 112 variable fields; however, for the older datasets approxi-
mately 60 of these variable fields were left empty, narrowing down the number
of possible features to 62. We then narrowed down the number of possible
features to 22 because many of the variables are unrelated to loan quality.

In order to reduce the number of features down from 22, we used a se-
ries of filter and wrapper methods for the feature selection process. The
filter method, also known as variable ranking, is a preprocessing step, inde-
pendent of the choice of the predictor. It involves computing the Pearson
correlation coefficients between all feature variables in order to assess linear
dependencies between variables [5]. Variables then can be selected according
to individual predictive power, using as a criterion the performance of a clas-
sifier built with a single variable. The correlation table for the final selected
11 variables is listed below.

3

loan status loan amnt emp length home ownership annual inc verification status dti inq last 6mths open acc revol bal revol util total acc

loan status 1 0.010718327 0.017272628 0.02697888 0.0439936 0.0037642 -0.034415383 -0.074169407 0.01649611 0.001625551 -0.086700536 0.036143098
loan amnt 0.010718327 1 0.118774612 0.077193628 0.267839904 0.313338349 0.027853603 -0.005793888 0.173718863 0.310312711 0.039748872 0.233605029
emp length 0.017272628 0.118774612 1 0.189125588 0.124791054 0.051026275 0.044429288 -0.002198094 0.094723646 0.144964143 0.01196939 0.200057498
home ownership 0.02697888 0.077193628 0.189125588 1 0.118528702 0.011319636 -0.021719833 0.056484589 0.136529014 0.137277015 -0.105512739 0.227584342
annual inc 0.0439936 0.267839904 0.124791054 0.118528702 1 0.11666984 -0.123348097 0.029051666 0.153243388 0.278156404 0.009516563 0.23259874
verification status 0.0037642 0.313338349 0.051026275 0.011319636 0.11666984 1 0.046581309 -0.002697903 0.069319929 0.124962744 0.043002953 0.091164409
dti -0.034415383 0.027853603 0.044429288 -0.021719833 -0.123348097 0.046581309 1 0.005389789 0.28513401 0.220606421 0.277286286 0.22189278
inq last 6mths -0.074169407 -0.005793888 -0.002198094 0.056484589 0.029051666 -0.002697903 0.005389789 1 0.098734557 -0.018427605 -0.068854616 0.112368473
open acc 0.01649611 0.173718863 0.094723646 0.136529014 0.153243388 0.069319929 0.28513401 0.098734557 1 0.286992782 -0.091948665 0.689161665
revol bal 0.001625551 0.310312711 0.144964143 0.137277015 0.278156404 0.124962744 0.220606421 -0.018427605 0.286992782 1 0.297092995 0.313374372
revol util -0.086700536 0.039748872 0.01196939 -0.105512739 0.009516563 0.043002953 0.277286286 -0.068854616 -0.091948665 0.297092995 1 -0.079115494
total acc 0.036143098 0.233605029 0.200057498 0.227584342 0.23259874 0.091164409 0.22189278 0.112368473 0.689161665 0.313374372 -0.079115494 1

Table 1: Correlation table for predictors and response

These variable correlations can also be viewed visually by examining the
normalized variable distributions (For the image Loan Amount, Annual In-
come, and Revolving Balance have been divided by 1000).

Figure 1: Normalized predictor distributions

After verifying variables through the filter method, we then further assessed
predictability power through a wrapper method. Through a general frame-
work, the wrapper method consists in using the prediction performance of
a given learning machine to assess the relative usefulness of subsets of vari-
ables [7]. In this case, we used a logistic regression as the learning machine.

4

Each variable was used as the only feature of the logistic regression and then
trained on the training portion of 2007-2011 dataset. The regression was
then ran on the testing portion of the 2007-2011 dataset. In order to assess
the variables predictability, the area under the curve (AUC) was calculated
from the results of the testing set. The results for the final 11 variables are
listed below.

Figure 2: AUC results

Listed are our model’s 11 feature variables: loan amount, employment length,
home ownership, annual income, verification status, debt-to-income ratio, in-
quiries in the last 6 months, open accounts, revolving balance, revolving uti-
lization, and total accounts. Verification status indicates whether annual in-
come numbers were verified by Lending Club, self-verified by the borrower, or
not verified at all. Debt-to-income ratio is calculated using the borrower’s to-
tal monthly debt payments plus the requested Lending Club loan, divided by
the borrower’s self-reported monthly income. Inquiries in the last 6 months
represent the number of credit inquiries over that period. Open accounts in-
dicate the number of open credit lines in the borrower’s credit file. Revolving
balance represents the total of all balances on all revolving charge accounts.
Revolving utilization indicates the amount of credit the borrower is using
relative to all available revolving credit. Total accounts represent the total
number of credit lines currently in the borrower’s credit file. The remain-
ing feature variables are self-explanatory. Originally, we included the loan
term variable in our model, but later decided to focus on only 36-month loans.

In order to use all of these features for our model, we had to convert several
classification variables into numerical values. For home ownership, the sta-

5

tuses of Other, None and Rent were converted to 0, Mortgage was converted
to 1, and Own was converted to 2. For Verification Status, Not Verified was
converted to 0, Source Verified was converted to 1, and Verified was converted
to 2. All of these conversions make safe assumptions about the weighting of
each classification.

In order to train our model, we decided to first use the 2007-2011 dataset
of accepted loans because at this point all of the loans in the dataset have
either been charged off or fully paid. This limits any temporal issues and
helps us avoid a biased sampling. In the end this gave us over 35,000 loans
to examine.

4 Modeling

4.1 Overview

After data selection and cleaning, we evaluated a number of different machine
learning techniques for their accuracy and stability in predicting loan default
risk. All analyses were conducted in Python with the Numpy-Pandas-Scikit
stack. For cross-validation and out-of-sample testing we used the Scikit cross-
validation module along with the train-test split method. Our usual approach
was to use 66% of data for training and hold the remainder out for testing.
Since the two classes we wished to predict, defaulting vs. non-defaulting
loans, were not balanced (default rate across all buckets was only 15%) stan-
dard classification algorithms were not uniformly successful out of the box.
We therefore set specified probability cutoffs and compared that value with
the implied probability of default generated by each model. For example, we
might only decide to purchase a loan if the model predicted a < 10% prob-
ability of default compared to a median default rate of 15%. Moreover, we
first ran through a broad range of algorithms on the full loan dataset without
adjusting by bucket in order to gain an intuition for which models were likely
to perform best, before moving forward with the most promising models to
train and test on individual buckets. We will now provide an overview of
some of the ML methods we tested.

6

4.2 Logistic Regression

The first algorithm we assessed was logistic regression. Logistic regression
is a generalized linear model used for classification tasks. It works by fit-
ting a series of coefficients corresponding to feature weightings to a sigmoid
function. Coefficient optimization was performed using the coordinate as-
cent algorithm. When tested on our initial set of 8 features (loan amount,
employment length, annual income, verification status, debt-to-income ratio,
open accounts, revolving utilization, and total accounts), we achieved an av-
erage test accuracy of 88% when we set the probability cutoff at the median
default rate of 85%. We were encouraged by these results, as it indicated
that our features did contain predictive information.

Figure 3: Example of logistic regression in the two-dimensional setting from
[6]

4.3 Linear Discriminant Analysis

The second algorithm we tested was linear discriminant analysis (LDA), an-
other linear classification method that assumes a Gaussian distribution on the
underlying features. In LDA, the probability estimate of a point is derived
from the distance of the point from the separating hyperplane [6]. Though
often used for dimensionality reduction, we found that the LDA performed
surprisingly well on our dataset. Again, testing on our initial set of 8 features,

7

we achieved an average test accuracy of 92% when we set the probability cut-
off at the median default rate of 85%. We will go into more detail on LDA
later, as it formed the core of our final model.

4.4 Support Vector Machines

We next attempted to use support vector machines with both linear and non-
linear kernels. Support vector machines (SVM) have been used in the past
for similar problems. While linear SVMs are widely used in classification and
function by deriving two so-called support vectors which delineate the deci-
sion boundary. Unlike other linear models, SVM are only fit by the training
points nearest to the decision boundary, operating from the principle that
we should focus on the examples that are hardest to classify. While initial
results with these models were promising, the best sustained performance
we were able to achieve was an average test accuracy of 89% on a median
default rate of 85% using a linear kernel. Non-linear kernels, including radial
and polynomial variants, did not yield results above the median default rate.
This seems to indicate, in accordance with our intuition, that many of our
predictors varied fairly linear with the response.

4.5 Ensemble Methods

The final machine learning models we tested were of the ensemble variety,
specifically a classification tree, random forest classifier, and AdaBoost clas-
sifier. Ensemble models are well-known as effective out-of-the-box ML algo-
rithms that require little tuning of hyperparameters and are able to capture
non-linear relationships between predictors and the response [6]. AdaBoost
is a particularly widely used algorithm that works by fitting a series of weak
learners that cumulatively provide superior predictive performance. When
testing these models on the 2007-2011 dataset, we achieved best performance
with the AdaBoost classifier, attaining a test accuracy of 91.7%, comparable
to that of our LDA model. However, due to the noticeable increase in train-
ing time required for AdaBoost, we decided to proceed with our LDA model.

8

Figure 4: Portion of our classification tree

4.6 Final Model and Results

As stated earlier, the final model we used was a linear discriminant analy-
sis. We first trained the model in the same manner as previous algorithms,
employing a 66-33 train-test split. However, this time we trained and tested
specifically within each loan bucket to see whether the model would achieve
our goal of finer-grained loan sorting. We also ran the model repeatedly on
a series of “confidence intervals,” or the percentile cutoff for loan probability
of default. Finally, for in-sample tests we ran 20 randomized trials to assess
the consistency of results.

Below are a selection of results in chart format. The first chart demon-
strates the predominantly upward sloping relationship between our degree
of confidence in the quality of the loan (by percentile of probability of not
defaulting) and the difference between default rate in our selected loans and
the median default rate of the bucket. One slight caveat is that what we refer
to as the “default rate differential” is only an approximation of the difference
in default rate, as this differential actually measures the difference between
the number of perfect loans (loans whose payments were always made on
time, never late or in default) chosen by our model and the median. This
simplifying assumption was made to ensure a two-class prediction problem,
but has the effect of inflating some of the absolute numbers associated with
our increase in predictive accuracy.

9

Figure 5: In-sample results in loan buckets A-D, with 20 random trials per
bucket

The next chart shows the same results, but this time the differential is av-
eraged across all of the buckets. This has the helpful effect of smoothing
out some of the variance resulting from the relatively small sample sizes of
loans selected, especially at higher confidence intervals in some of the more
sparsely populated buckets. This chart clearly demonstrates the expected
increase in predictive accuracy as model specificity increases. For instance,
if we were to select only the top 25% of loans according to our model (75th
confidence interval), we could expect a differential of about 3.5% between our
selected loans and the median loan. This translates into a roughly 2-2.5%
return premium (alpha) over a random selection of loans over all buckets,
after factoring in effects from the simplifying assumption referenced earlier.

We will now move into our out-of-sample results. In order to validate the
preliminary findings above, we trained the model on the entirety of the 2007-
2011 dataset and tested on a newly cleaned 2012-2013 dataset. In order to
ensure the time safety of our model, we never allowed any data from the
latter set to make its way into the model as training observations, nor did
we retroactively modify the model after observing the results on the out-
of-sample data. As before, we note the general increase in differential as

10

Figure 6: In-sample results averaged across loan buckets

Figure 7: Out-of-sample results in loan buckets A-D

confidence increases. These increases are particularly notable and consis-
tent in certain loan buckets, which supports the hypothesis that the LDA
assumptions hold to a greater degree among some buckets as opposed to
others. Additionally, some of the fluctuation, especially at the higher confi-
dence intervals, is undoubtedly due to the aforementioned variance associated

11

with small loan sample selection. We note positive differentials across all of
the buckets. Again, this chart reduces some of the variation contained in

Figure 8: Out-of-sample results averaged across loan buckets

the prior figure. We note a strong linear correlation between our model’s
confidence and the observed differential that bears a high degree of similar-
ity to that of the analogous in-sample results. Finally we have a table that
gives precise values for the proportions of perfect loans selected by our model
compared with the median proportion of perfect loans by C sub-bucket.

12

Results @70% Confidence

C1 C2 C3 C4 C5
Perfect loans (model) 0.848681542 0.863111111 0.81804203 0.817066667 0.817001181
Perfect loans (random) 0.828748783 0.818024263 0.779452476 0.764837626 0.752878654
Differential 0.019932759 0.045086848 0.038589554 0.052229041 0.064122527

Results @80% Confidence

C1 C2 C3 C4 C5
Perfect loans (model) 0.851491175 0.872666667 0.824750192 0.8224 0.844109832
Perfect loans (random) 0.828748783 0.818024263 0.779452476 0.764837626 0.752878654
Differential 0.022742392 0.054642403 0.045297716 0.057562374 0.091231178

Results @90% Confidence

C1 C2 C3 C4 C5
Perfect loans (model) 0.845498783 0.884 0.840245776 0.8352 0.883185841
Perfect loans (random) 0.828748783 0.818024263 0.779452476 0.764837626 0.752878654
Differential 0.016750001 0.065975737 0.0607933 0.070362374 0.130307187

Table 2: Selected results from C bucket loans

5 Generating a Price of a Lending Club Note

In this section, we will explore how to go from a probability output from a
statistical learning algorithm to a dollar price on a peer-to-peer note. The
first property we would like in a pricing model is that it is independent of
the statistical model that generated the input. Every model in use has the
excellent property that it either directly or indirectly outputs a probability
that the loan will default at some point in its term. We will explore this over
several models that we tried.

5.1 The Probability Output of Statistical Models

Logistic Regression: Were we to fit a logistic regression to classify the
data, we would get a probability for free! This is given by the sigmoid
likelihood hypothesis over a loan x and a fitted θ,

P (default of x) = hθ(x) =
1

1 + eθT x
.

Linear Discriminant Analysis: In linear discriminant analysis, we assume
the data fits a Gaussian with the same variance but different means for

13

each class label. In this case, for a loan x and an indicator of default
y, this gives the formula

p(x|y;µy,Σ) = N (µy,Σ).

By applying Bayes’ rule we can find the posterior probability P (y|x)
for the pricing model.

Support Vector Machines: The Support Vector Machine is a more diffi-
cult problem: We can solve the problem of assigning a probability to
the output of the SVM model with Platt Scaling [8]. Without going
into excessive detail, this method involves fitting a maximum-likelihood
logistic regression to the results of the SVM model. In any case, this is
a standard method and allows us to use SVM outputs.

Ensemble Methods/AdaBoost According to Niculescu et. al, we can
again use Platt Scaling to achieve a good estimate of posterior proba-
bilities from decision trees, random forests, and Adaboost [9].

5.2 The Pricing Model

In any case, it is safe for our pricing model to assume that there will be an
output probability. This is the only output we are guaranteed to get. As a
first attempt, we will construct a pricing formula for a note. Moving from
there, we will add a correction for an obvious flaw in the model.

We first notice that is a loan defaults, this doesn’t preclude the borrower
from having similar problematic events occur in the rest of the loan term. So
we must adjust our figure for the probability of default to account for this
discrepancy.

Drawing from some of the work of Anderson [1], We take the implied or
output probability of a given ML model Pmodel. Then we can model a default
as a single event drawn from a Poisson distribution of which there could be
many more in a given loan term. Let λ be the implied Poisson average of
the number of defaults in a given loan period. Then we have that

Pmodel =
∞∑
k=1

λke−λ

k!
. (1)

We can then solve numerically for λ. In the model, this is implemented using
a modified form of Newton’s method.

14

After we have calculated the parameter for the Poisson model, we use a
modified DCF analysis to give a total value of the bond. The modifications
essentially account for the Poisson expectiation of default by weighting each
payment by the likelihood of at least one default before they are paid off. If
our default model were perfect, any LendingClub note worth over $25 would
be a sound investment.

Let t be the term of a given loan in months. Then the implied monthly
Poisson average γ = λ

t
. Then we can break our probability of default into

the Poisson expectation of no default in a month, e−γ, the monthly payout
of a loan c, and the discount rate, d, to give the following formula for the
price V of a loan.

V =
t∑

m=1

e−mγc

dm
. (2)

This pricing model has shown to be very numerically stable, but there are 2
serious objections to it.

1. The Poission assumption of default is not sound. This is an entirely
valid criticism, but the data don’t seem to support the claim that the
loans default disproportionately at any particular part of the term. If
we were to use a different probabilty distiribution, we would need richer
input to make a maximum-likelihood estimate of the parameters, and
we do not have any temporal data to make that feasible.

2. The model is entirely independent of possible upcoming changes in
market conditions and the economy as a whole, so loans and their prices
are totally vulnerable to a widespread downturn in the economy. This is
also a valid complaint. It’s also the big question, so a satisfying answer
would probably be a much bigger deal than picking good consumer
loans. That being said, there is one modification we can make, also
from Anderson [1]. There is for some reason a large empirical effect
of the 90-day health of loans of a particular vintage and the long-term
prospects of the vintage. There is not a lot of work that has been done
in this area, and we don’t have the temporal data infrastructure to
handle it, but we have here a modified formula that could be calibrated
for a more sophisticated price.

Let K be the 90-day non-delinquncy rate of loans in the past 6 months
in the same debt grade and α > 1 some constant that needs to be fit.

15

Then we can replace Equation 1 with the following

K−αPmodel =
∞∑
k=1

λke−λ

k!
(3)

This is the most accurate pricing model we were able to create.

5.3 Sharpe Ratio

It remains to try and calculate a Sharpe ratio for the loan data. Since
we didn’t have the type of temporal back-testing infrastructure we would
like, we were unable to empirically determine our Sharpe ratio. Instead, we
derived an estimate based on the work of Bams empirically determining loan
correlation of small retail loans in a variety of markets to be about 0.3[2].
Clearly, this is a vast oversimplification, and we are throwing away a massive
amount of information. However, since this is for a retroactive performance
measure, this is not a top priority.

For purchased loans x with variance in earnings σx and value Vx from
Equation 2 and cost C, let σ =

∑
x σx, Ra =

∑
x Vx, and Rb =

∑
xC. Then

the Sharpe S can be calculated in the usual way by

S =
E[Ra −Rb]

σa
.

These formula are all sums over the number of loans purchased, so we actually
used online averages for ease of computation. Under the buying strategy
discussed, our Sharpe was 3.41.

6 Risk Management

Like any investment strategy, there are always associated risks. Therefore,
we took a few measures to minimize our exposure to some of these risks. We
were initially quite worried about the accuracy of our model over multiple
years since we built our models based on the 2007-2011 dataset provided by
Lending Club. Was this snapshot in time indicative of ever-changing condi-
tions in the market? For example, are people in 2009 just as likely to pay
off loans as they are in 2012? Fortunately, upon outside testing of our model
on the 2012 and 2013 datasets (which were not used to build the model) we

16

still achieved similar results.

Vik Chawla, a lead research associate at Echelon Capital Management, ex-
plained that the primary concern with changing market conditions is that
this industry has not been around during a market cycle. We have limited
data about the sustainability of the model in the event of a major downturn
in the market. As a result, we are focusing primarily in 36-month loans,
rather than the 60-month loans. The shorter loans decrease the probability
that they will overlap with a downturn in the market minimizing our expo-
sure to this uncertainty as much as possible.

The other major risk, which is much more difficult to control, is if Lend-
ing Club were to go out of business. Mr. Chawla explained that while this
risk is most certainly not negligible, it is a risk that is carried with any in-
vestment. Additionally, Lending Club has some safeguards in place to ensure
loan payment in the event that Lending Club goes out of business. Lending
Club has executed a backup and successor servicing agreement with Portfolio
Financial Servicing Company (“PFSC”). Under this agreement, PFSC will
service borrower loans if Lending Club is unable to.

7 Execution

Execution became a key question for our group - unlike other groups, who
traded stocks or securities, we had no pre-existing infrastructure (such as
Quantopian or Thesys) that would automatically implement our model. In
order to automate our model process, we wrote a Python script that brought
together our various models and automatically purchased loans that met our
predetermined criteria. The following graphic illustrates our execution path,
which we will walk through step by step.

17

Figure 9: Execution flowchart

Lending Club offers a RESTful API, a feature that ultimately became
critical to our execution progression. Using the Requests Python module,
we were able to access the most recent batch of loans through the following
line: The rq represents the Requests package, which allows us to make this

one-line HTTP call. The URL represents the specific path request that we
are making (in this case, loan listings) and the Authorization is a unique
code attached to our Lending Club account. This way, we don’t need to log
in with our usual username and password (i.e. the script does not need to
worry about login time-out). This request returns a JSON file representing
the most recent batch of loans. Our first major step is to parse this data.
We get the relevant features of each loan (see code appendix for details), and
feed this data into a separate module. This module represents our primary
model, which takes in the various fields and applies the corresponding LDA
(as discussed earlier). This function returns our predicted probability of de-
fault (again, see appendix for details).

We take this probability and feed it into our price function, which imple-
ments the algorithm described earlier in this paper and returns a price (per
$25 invested). This price represents our calculated present value of the loan

18

(it even discounts inflation, which for our purposes is set at 2% a year). For
example, if the price returned is $27.5 and we purchase $25 of that loan, we
would add a book value of $27.50 to our portfolio. If the price returned is
$24.50, we would add $24.50 to our portfolio book value. We then take that
price and either purchase or do not purchase the loan based on whatever
threshold we input. The following request executes the purchase:

This is the only other occasion that we directly interact with the Lending
Club servers during the entire process. The URL and Authorization are iden-
tical with the earlier call, and the JSON payload conveys the loan ID of the
loan to be purchased, as well as the amount that we plan to purchase. We
can run this script in the background permanently, constantly checking for
the newest batch of loans and acting accordingly.

Moving forwards, we have several areas of opportunity to make our exe-
cution more effective. From talking to Vik, we learned of two specific focus
areas. First, we can colocate our servers in Las Vegas, where the Lending
Club servers are. Other firms in the space have spent individually more than
$200,000 on this endeavour (Vik), but if we really wanted to implement our
model on a large scale, it can be worth it to get a first mover advantage
on loans coming out. Secondly, we can work on a predictive model to as-
sess when the most valuable loans are likely to surface. Lending Club strictly
enforces a limit of one API interaction (listing request, purchase, etc) per sec-
ond, so adding a level of finesse to our searches could offer a huge advantage.
For example, rather than grabbing a random loan per second to evaluate, we
could tune our search to identify different loans at different times, based on
the probability of their appearance.

However, while we are still at this stage of operations, the competition fac-
tor should not be as critical. Lending Club offers a different set of loans
to institutional and large-scale investors than to “amateur” investors. These
different categories are identical in loan composition and are determined ran-
domly, and with a split of 80% to 20% in favor of the amateur section. We
fall firmly in this amateur category, and so long as we stay there, latency and
time prediction will not make or break our strategy.

19

Reflection and Acknowledgements

Having touched on a number of areas for future work throughout the paper,
we don’t believe it necessary to restate those avenues here. Please see the
above sections on modeling, pricing, and execution for specific prospective
future directions pertaining to this project.

As regards acknowledgements, we would like to sincerely thank Dr. Lisa
Borland and Enzo Busseti for their help and guidance throughout the course,
especially in facilitating connections with industry contacts. Jeff Hilton and
Vik Chawla were also tremendous resources and were more than generous in
offering their time and expertise in advising us. Finally, we would also like
to offer our heartfelt congratulations to all of our fellow students in 448 this
quarter - all of the projects were highly informative and well done.

20

References

[1] Scott Anderson and Janet Jowzik. Building a credit model using gse
loan-level data. The Journal of Structured Finance, 20:19–36, 2014.

[2] Wilhelmus Fransiscus Maria Bams, Magdalena Pisa, Christian CP Wolff,
et al. Modeling default correlation in a US retail loan portfolio.

[3] Chris Barth. Looking For 10% Yields? Go Online For Peer To Peer
Lending.

[4] Contributor. Peer To Peer Lending Crosses $1 Billion In Loans Issued.

[5] Isabelle Guyon and André Elisseeff. An introduction to variable and
feature selection. J. Mach. Learn. Res., 3:1157–1182, March 2003.

[6] Gareth James, Daniela Witten, Trevor Hastie, and Robert Tibshirani.
An Introduction to Statistical Learning: with Applications in R. Springer,
New York, 1st ed. 2013, corr. 5th printing 2015 edition edition, August
2013.

[7] Ron Kohavi and George H. John. Relevance wrappers for feature subset
selection. Artificial Intelligence, 97(1):273 – 324, 1997.

[8] John C. Platt. Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods. In ADVANCES IN
LARGE MARGIN CLASSIFIERS, pages 61–74. MIT Press, 1999.

[9] Peter Renton. Obtaining calibrated probabilities from boosting. CoRR,
abs/1207.1403, 2012.

21

Appendix: Code

Main execution script:

basicstylebasicstyle basicstyle1 import requests as rq

basicstylebasicstyle basicstyle2 import time

basicstylebasicstyle basicstyle3 from invest import decide

basicstylebasicstyle basicstyle4 import warnings

basicstylebasicstyle basicstyle5 from price import get_price

basicstylebasicstyle basicstyle6 import sys

basicstylebasicstyle basicstyle7 warnings.filterwarnings("ignore")

basicstylebasicstyle basicstyle8
basicstylebasicstyle basicstyle9 def getSub(subgrade):

basicstylebasicstyle basicstyle10 if subgrade == ’A1’:

basicstylebasicstyle basicstyle11 return 0, .0532

basicstylebasicstyle basicstyle12 if subgrade == ’A2’:

basicstylebasicstyle basicstyle13 return 1, .0649

basicstylebasicstyle basicstyle14 if subgrade == ’A3’:

basicstylebasicstyle basicstyle15 return 2, .0697

basicstylebasicstyle basicstyle16 if subgrade == ’A4’:

basicstylebasicstyle basicstyle17 return 3, .0739

basicstylebasicstyle basicstyle18 if subgrade == ’A5’:

basicstylebasicstyle basicstyle19 return 4, .0789

basicstylebasicstyle basicstyle20 if subgrade == ’B1’:

basicstylebasicstyle basicstyle21 return 5, .0839

basicstylebasicstyle basicstyle22 if subgrade == ’B2’:

basicstylebasicstyle basicstyle23 return 6, .0916

basicstylebasicstyle basicstyle24 if subgrade == ’B3’:

basicstylebasicstyle basicstyle25 return 7, .0975

basicstylebasicstyle basicstyle26 if subgrade == ’B4’:

basicstylebasicstyle basicstyle27 return 8, .1075

basicstylebasicstyle basicstyle28 if subgrade == ’B5’:

basicstylebasicstyle basicstyle29 return 9, .1147

basicstylebasicstyle basicstyle30 if subgrade == ’C1’:

basicstylebasicstyle basicstyle31 return 10, .1199

basicstylebasicstyle basicstyle32 if subgrade == ’C2’:

basicstylebasicstyle basicstyle33 return 11, .1299

basicstylebasicstyle basicstyle34 if subgrade == ’C3’:

22

basicstylebasicstyle basicstyle35 return 12, .1367

basicstylebasicstyle basicstyle36 if subgrade == ’C4’:

basicstylebasicstyle basicstyle37 return 13, .1446

basicstylebasicstyle basicstyle38 if subgrade == ’C5’:

basicstylebasicstyle basicstyle39 return 14, .1531

basicstylebasicstyle basicstyle40 if subgrade == ’D1’:

basicstylebasicstyle basicstyle41 return 15, .1629

basicstylebasicstyle basicstyle42 if subgrade == ’D2’:

basicstylebasicstyle basicstyle43 return 16, .1727

basicstylebasicstyle basicstyle44 if subgrade == ’D3’:

basicstylebasicstyle basicstyle45 return 17, .1825

basicstylebasicstyle basicstyle46 if subgrade == ’D4’:

basicstylebasicstyle basicstyle47 return 18, .1899

basicstylebasicstyle basicstyle48 else:

basicstylebasicstyle basicstyle49 return 19, .1999

basicstylebasicstyle basicstyle50
basicstylebasicstyle basicstyle51
basicstylebasicstyle basicstyle52 def processLoan(results , index):

basicstylebasicstyle basicstyle53 subgrade = results[index][’subGrade ’]

basicstylebasicstyle basicstyle54 if subgrade == ’E1’ or subgrade == ’E2’ or

basicstylebasicstyle basicstylesubgrade == ’E3’ or subgrade == ’E4’ or

basicstylebasicstyle basicstylesubgrade == ’E5’ or subgrade == ’F5’ or

basicstylebasicstyle basicstylesubgrade == ’F4’ or subgrade == ’F3’ or

basicstylebasicstyle basicstylesubgrade == ’F2’ or subgrade == ’F1’ or

basicstylebasicstyle basicstylesubgrade == ’G1’ or subgrade == ’G2’ or

basicstylebasicstyle basicstylesubgrade == ’G3’:

basicstylebasicstyle basicstyle55 return

basicstylebasicstyle basicstyle56 subgrade_input , rate = getSub(subgrade)

basicstylebasicstyle basicstyle57 term = results[index][’term’]

basicstylebasicstyle basicstyle58 if term == 36:

basicstylebasicstyle basicstyle59 term_input = 0

basicstylebasicstyle basicstyle60 else:

basicstylebasicstyle basicstyle61 term_input = 1

basicstylebasicstyle basicstyle62 return

basicstylebasicstyle basicstyle63 id_num = results[index][’id’]

basicstylebasicstyle basicstyle64 loan_amt = results[index][’loanAmount ’]

basicstylebasicstyle basicstyle65 emp_length = results[index][’empLength ’]

basicstylebasicstyle basicstyle66 if emp_length == None:

23

basicstylebasicstyle basicstyle67 emp_length = 0

basicstylebasicstyle basicstyle68 home = results[index][’homeOwnership ’]

basicstylebasicstyle basicstyle69 if home == ’MORTGAGE ’:

basicstylebasicstyle basicstyle70 home_input = 1

basicstylebasicstyle basicstyle71 elif home == ’OWN’:

basicstylebasicstyle basicstyle72 home_input = 2

basicstylebasicstyle basicstyle73 else:

basicstylebasicstyle basicstyle74 home_input = 0

basicstylebasicstyle basicstyle75 dti = results[index][’dti’]

basicstylebasicstyle basicstyle76 inc = results[index][’annualInc ’]

basicstylebasicstyle basicstyle77 verified = results[index][’isIncV ’]

basicstylebasicstyle basicstyle78 if verified == ’VERIFIED ’:

basicstylebasicstyle basicstyle79 ver_input = 2

basicstylebasicstyle basicstyle80 elif verified == ’SOURCE_VERIFIED ’:

basicstylebasicstyle basicstyle81 ver_input = 1

basicstylebasicstyle basicstyle82 else:

basicstylebasicstyle basicstyle83 ver_input = 0

basicstylebasicstyle basicstyle84 inq = results[index][’inqLast6Mths ’]

basicstylebasicstyle basicstyle85 openAccs = results[index][’openAcc ’]

basicstylebasicstyle basicstyle86 revoBal = results[index][’revolBal ’]

basicstylebasicstyle basicstyle87 revoUt = results[index][’revolUtil ’]

basicstylebasicstyle basicstyle88 totalAcc = results[index][’totalAcc ’]

basicstylebasicstyle basicstyle89 print ’subgrade: ’ + subgrade , ’\nterm:’, term , ’\

basicstylebasicstyle basicstylenloan ID:’, id_num , ’\nloan amount:’, loan_amt ,

basicstylebasicstyle basicstyle’\nemployment length:’, emp_length , ’\nhome

basicstylebasicstyle basicstyleownership:’, home , ’\nincome:’, inc , ’\nDTI:’,

basicstylebasicstyle basicstyledti , ’\nincome verified?’, verified , ’\nnumber

basicstylebasicstyle basicstyleof inquiries:’, inq , ’\nopen accounts:’,

basicstylebasicstyle basicstyleopenAccs , ’\nrevolving balance:’, revoBal , ’\

basicstylebasicstyle basicstylenrevolving utility:’, revoUt , ’\ntotal accounts

basicstylebasicstyle basicstyle:’, totalAcc , ’\n’

basicstylebasicstyle basicstyle90 loan = [term_input , loan_amt , emp_length /12.0 ,

basicstylebasicstyle basicstylehome_input , inc , ver_input , dti , inq , openAccs ,

basicstylebasicstyle basicstylerevoBal , revoUt /100.0 , totalAcc]

basicstylebasicstyle basicstyle91 inves , percent = decide(loan , subgrade_input , 80)

basicstylebasicstyle basicstyle92 price = round(get_price (1 - percent , rate , term ,

basicstylebasicstyle basicstyle1.04), 2)

basicstylebasicstyle basicstyle93 if price > 27:

24

basicstylebasicstyle basicstyle94 print ’Our model tells us that we SHOULD buy

basicstylebasicstyle basicstylethis loan , as it has a’, 100 - round(percent

basicstylebasicstyle basicstyle* 100, 2), "percent chance of default , and an

basicstylebasicstyle basicstyle estimted value of $", price , ’per $25

basicstylebasicstyle basicstylepurchased , given an interest rate of’, rate

basicstylebasicstyle basicstyle95 else:

basicstylebasicstyle basicstyle96 print ’Our model tells us that we SHOULD NOT buy

basicstylebasicstyle basicstyle this loan , as it has a’, 100 - round(percent

basicstylebasicstyle basicstyle* 100, 2), "percent chance of default , and

basicstylebasicstyle basicstylean estimted value of $", price , ’per $25

basicstylebasicstyle basicstylepurchased , given an interest rate of’, rate

basicstylebasicstyle basicstyle97 print ’\n’

basicstylebasicstyle basicstyle98 buy = input("Should we purchase? 1 to purchase , 0

basicstylebasicstyle basicstyleto pass , 2 to end: ")

basicstylebasicstyle basicstyle99 print ’\n’

basicstylebasicstyle basicstyle100 if buy == 2:

basicstylebasicstyle basicstyle101 sys.exit (0)

basicstylebasicstyle basicstyle102 if buy == 1:

basicstylebasicstyle basicstyle103 po = rq.post(’https :// api.lendingclub.com/api/

basicstylebasicstyle basicstyleinvestor/v1/accounts /83008979/ orders ’,

basicstylebasicstyle basicstyleheaders ={’Authorization ’: ’Y8tVGnK3UGwA+jqURY

basicstylebasicstyle basicstyle/YYlrpEzc=’}, json={"aid":83008979 , "orders"

basicstylebasicstyle basicstyle:[{"loanID": id_num , "requestedAmount":

basicstylebasicstyle basicstyle25.0}]})

basicstylebasicstyle basicstyle104 print ’loan’, id_num , "was not successfully

basicstylebasicstyle basicstylepurchased ,", ’INSUFFICIENT_CASH\n’

basicstylebasicstyle basicstyle105 time.sleep (1)

basicstylebasicstyle basicstyle106
basicstylebasicstyle basicstyle107 print ’\nWelcome to the Team 4 automated trading

basicstylebasicstyle basicstylescript \n’

basicstylebasicstyle basicstyle108 time.sleep (1)

basicstylebasicstyle basicstyle109 print ’Created by Andy Feis , Viraj Mehta , Scott

basicstylebasicstyle basicstyleMorris , John Solitario , and Cameron Van Der Graaf

basicstylebasicstyle basicstyle \n’

basicstylebasicstyle basicstyle110 time.sleep (1)

basicstylebasicstyle basicstyle111 print ’Retrieving most recent loans ...\n’

basicstylebasicstyle basicstyle112 time.sleep (1)

basicstylebasicstyle basicstyle113

25

basicstylebasicstyle basicstyle114 loans = rq.get(’https ://api.lendingclub.com/api/

basicstylebasicstyle basicstyleinvestor/v1/loans/listing ’, headers ={’

basicstylebasicstyle basicstyleAuthorization ’: ’Y8tVGnK3UGwA+jqURY/YYlrpEzc=’})

basicstylebasicstyle basicstyle115
basicstylebasicstyle basicstyle116 json_loans = loans.json()

basicstylebasicstyle basicstyle117 results = json_loans[’loans’]

basicstylebasicstyle basicstyle118 for index in range(len(results)):

basicstylebasicstyle basicstyle119 processLoan(results , index)

Investment Decision module:

basicstylebasicstyle basicstyle1 import numpy as np

basicstylebasicstyle basicstyle2 import pandas as pd

basicstylebasicstyle basicstyle3 from sklearn.lda import LDA

basicstylebasicstyle basicstyle4 import pickle

basicstylebasicstyle basicstyle5 import warnings

basicstylebasicstyle basicstyle6
basicstylebasicstyle basicstyle7 warnings.filterwarnings("ignore")

basicstylebasicstyle basicstyle8
basicstylebasicstyle basicstyle9 def decide(loan , loan_grade , confidence):

basicstylebasicstyle basicstyle10 pred_arr = []

basicstylebasicstyle basicstyle11 res_arr = []

basicstylebasicstyle basicstyle12 for i in range (0,20):

basicstylebasicstyle basicstyle13 pred_arr.append(pickle.load(open("/Users/Scott/

basicstylebasicstyle basicstyleDesktop /448 execution/lda_" + str(i) + ".p", "

basicstylebasicstyle basicstylerb")))

basicstylebasicstyle basicstyle14 res_arr.append(pickle.load(open("/Users/Scott/

basicstylebasicstyle basicstyleDesktop /448 execution/res_" + str(i) + ".p", "

basicstylebasicstyle basicstylerb")))

basicstylebasicstyle basicstyle15 q = np.percentile(res_arr[loan_grade], confidence)

basicstylebasicstyle basicstyle16 return pred_arr[loan_grade]. predict_proba(loan)

basicstylebasicstyle basicstyle[0,1] > q, pred_arr[loan_grade]. predict_proba(

basicstylebasicstyle basicstyleloan)[0,1]

Pricing module:

basicstylebasicstyle basicstyle1 import math

basicstylebasicstyle basicstyle2
basicstylebasicstyle basicstyle3
basicstylebasicstyle basicstyle4 def get_lambda(p):

26

basicstylebasicstyle basicstyle5 lambda_up = 1.0

basicstylebasicstyle basicstyle6 lambda_down = 0

basicstylebasicstyle basicstyle7 for i in range (1 ,200):

basicstylebasicstyle basicstyle8 l = (lambda_up + lambda_down) / 2.0

basicstylebasicstyle basicstyle9 p_0 = 0

basicstylebasicstyle basicstyle10 for k in range (1 ,150):

basicstylebasicstyle basicstyle11 p_0 += math.exp(float(k) * math.log(l) - l - math

basicstylebasicstyle basicstyle.log(math.gamma(float(k) + 1)))

basicstylebasicstyle basicstyle12 if p_0 > p:

basicstylebasicstyle basicstyle13 lambda_up = l

basicstylebasicstyle basicstyle14 else:

basicstylebasicstyle basicstyle15 lambda_down = l

basicstylebasicstyle basicstyle16
basicstylebasicstyle basicstyle17 return (lambda_up + lambda_down) / 2

basicstylebasicstyle basicstyle18
basicstylebasicstyle basicstyle19 def get_price(p, interest_rate , months , discount):

basicstylebasicstyle basicstyle20 """We’re assuming here that the coupon value is $25

basicstylebasicstyle basicstyle, but that can be easily generalized.

basicstylebasicstyle basicstyle21 Enter the interest rate as a decimal 0 < interest

basicstylebasicstyle basicstylerate < 1. This is assuming that this is an an APR

basicstylebasicstyle basicstyle."""

basicstylebasicstyle basicstyle22 monthly_interest = interest_rate /12

basicstylebasicstyle basicstyle23 coupon = 25 * (monthly_interest / (1 - (1 +

basicstylebasicstyle basicstylemonthly_interest)**(-1 * months)))

basicstylebasicstyle basicstyle24 l = get_lambda(p)

basicstylebasicstyle basicstyle25 gamma = l / float(months)

basicstylebasicstyle basicstyle26 monthly_discount = ((discount - 1) / 12) + 1

basicstylebasicstyle basicstyle27 # print gamma

basicstylebasicstyle basicstyle28 V = 0

basicstylebasicstyle basicstyle29 for m in range(1, months):

basicstylebasicstyle basicstyle30 V += (math.exp(-1 * m * gamma) * coupon) / (

basicstylebasicstyle basicstylemonthly_discount ** m)

basicstylebasicstyle basicstyle31 return V

basicstylebasicstyle basicstyle32
basicstylebasicstyle basicstyle33 # def main():

basicstylebasicstyle basicstyle34 # print get_price (0.01 , 0.05, 36, 1.01)

basicstylebasicstyle basicstyle35
basicstylebasicstyle basicstyle36 # if __name__ == ’__main__ ’:

27

basicstylebasicstyle basicstyle37 # main()

Model creation script 1:

basicstylebasicstyle basicstyle1 # In-sample analysis

basicstylebasicstyle basicstyle2 import matplotlib.pyplot as plt

basicstylebasicstyle basicstyle3 from matplotlib.ticker import MaxNLocator

basicstylebasicstyle basicstyle4 import numpy as np

basicstylebasicstyle basicstyle5 import pandas as pd

basicstylebasicstyle basicstyle6 from sklearn import linear_model

basicstylebasicstyle basicstyle7 from sklearn import cross_validation

basicstylebasicstyle basicstyle8 from sklearn import ensemble

basicstylebasicstyle basicstyle9 from sklearn import svm

basicstylebasicstyle basicstyle10 from sklearn.lda import LDA

basicstylebasicstyle basicstyle11 from scipy import stats

basicstylebasicstyle basicstyle12 from sklearn import grid_search

basicstylebasicstyle basicstyle13 import statsmodels.api as sm

basicstylebasicstyle basicstyle14 import pickle

basicstylebasicstyle basicstyle15
basicstylebasicstyle basicstyle16
basicstylebasicstyle basicstyle17 pred_arr = []

basicstylebasicstyle basicstyle18
basicstylebasicstyle basicstyle19 base = "/Users/Cameron/Documents/MSE448/Data/Test

basicstylebasicstyle basicstyle/2007 _2011_week9_"

basicstylebasicstyle basicstyle20 suffix = ".csv"

basicstylebasicstyle basicstyle21 letters = ["a", "b", "c", "d"]

basicstylebasicstyle basicstyle22 numbers = ["1", "2", "3", "4", "5"]

basicstylebasicstyle basicstyle23 l = [base + x + y + suffix for x in letters for y in

basicstylebasicstyle basicstylenumbers]

basicstylebasicstyle basicstyle24
basicstylebasicstyle basicstyle25 def_rates = {l[0]:.0603 , l[1]:.0662 , l[2]:.0751 , l

basicstylebasicstyle basicstyle[3]:.079 , l[4]:.089 ,

basicstylebasicstyle basicstyle26 l[5]:.0991 , l[6]:.1065 , l[7]:.1171 , l

basicstylebasicstyle basicstyle[8]:.1242 , l[9]:.1269 ,

basicstylebasicstyle basicstyle27 l[10]:.1349 , l[11]:.1427 , l[12]:.1465 , l

basicstylebasicstyle basicstyle[13]:.1527 , l[14]:.1596 ,

basicstylebasicstyle basicstyle28 l[15]:.1629 , l[16]:.1677 , l[17]:.1727 , l

basicstylebasicstyle basicstyle[18]:.1758 , l[19]:.1825}

basicstylebasicstyle basicstyle29

28

basicstylebasicstyle basicstyle30 confidence_ints = np.arange (50 ,95 ,2.5)

basicstylebasicstyle basicstyle31
basicstylebasicstyle basicstyle32 results_by_bucket = {}

basicstylebasicstyle basicstyle33
basicstylebasicstyle basicstyle34 runs = 20

basicstylebasicstyle basicstyle35
basicstylebasicstyle basicstyle36 for n in range(0,runs):

basicstylebasicstyle basicstyle37 c_acc = []

basicstylebasicstyle basicstyle38 for z in confidence_ints:

basicstylebasicstyle basicstyle39 acc = []

basicstylebasicstyle basicstyle40 select = []

basicstylebasicstyle basicstyle41 for f in l:

basicstylebasicstyle basicstyle42 # print f

basicstylebasicstyle basicstyle43 arr = pd.read_csv(f).dropna ()

basicstylebasicstyle basicstyle44 arr_np = arr.values

basicstylebasicstyle basicstyle45
basicstylebasicstyle basicstyle46 X = arr_np [: ,2:]

basicstylebasicstyle basicstyle47 Y = np.ravel(np.asarray(arr_np [:,:1], dtype=’d

basicstylebasicstyle basicstyle’))

basicstylebasicstyle basicstyle48 default_rate = np.mean(Y)

basicstylebasicstyle basicstyle49
basicstylebasicstyle basicstyle50 X_train , X_test , y_train , y_test =

basicstylebasicstyle basicstylecross_validation.train_test_split(

basicstylebasicstyle basicstyle51 X, Y, test_size =0.33 , random_state=n)

basicstylebasicstyle basicstyle52
basicstylebasicstyle basicstyle53 lda = LDA()

basicstylebasicstyle basicstyle54 lda.fit(X_train , y_train)

basicstylebasicstyle basicstyle55 res = lda.predict_proba(X_test)[0:,1]

basicstylebasicstyle basicstyle56 q = np.percentile(res ,z)

basicstylebasicstyle basicstyle57
basicstylebasicstyle basicstyle58 #j is counter , c is number of non -default

basicstylebasicstyle basicstyleloans , b is num total invested loans

basicstylebasicstyle basicstyle59 j = 0

basicstylebasicstyle basicstyle60 c = 0

basicstylebasicstyle basicstyle61 b = 0

basicstylebasicstyle basicstyle62 for i in res:

basicstylebasicstyle basicstyle63 if i > q:

basicstylebasicstyle basicstyle64 if y_test[j] == 1:

29

basicstylebasicstyle basicstyle65 c += 1

basicstylebasicstyle basicstyle66 b += 1

basicstylebasicstyle basicstyle67 j += 1

basicstylebasicstyle basicstyle68
basicstylebasicstyle basicstyle69 acc.append(def_rates[f] - (1 - (float(c)/b)))

basicstylebasicstyle basicstyle70
basicstylebasicstyle basicstyle71 if n == 0:

basicstylebasicstyle basicstyle72 results_by_bucket[f] = {n : [def_rates[f] -

basicstylebasicstyle basicstyle(1 - (float(c)/b))]}

basicstylebasicstyle basicstyle73 else:

basicstylebasicstyle basicstyle74 results_by_bucket[f][n] = results_by_bucket[

basicstylebasicstyle basicstylef][n]. append(def_rates[f] - (1 - (float(c

basicstylebasicstyle basicstyle)/b)))

basicstylebasicstyle basicstyle75
basicstylebasicstyle basicstyle76 # print (def_rates[f] - (1 - ((float(c)/b) -

basicstylebasicstyle basicstylenp.mean(y_test)))) * 100

basicstylebasicstyle basicstyle77 pred_arr.append(lda)

basicstylebasicstyle basicstyle78 c_acc.append(np.mean(acc))

basicstylebasicstyle basicstyle79 plt.plot(confidence_ints , c_acc)

basicstylebasicstyle basicstyle80 print "cumulative accuracy = " + str(np.mean(acc

basicstylebasicstyle basicstyle)) + "q = " + str(z)

basicstylebasicstyle basicstyle81
basicstylebasicstyle basicstyle82 letters = ["a", "b", "c", "d"]

basicstylebasicstyle basicstyle83 numbers = ["1", "2", "3", "4", "5"]

basicstylebasicstyle basicstyle84 lablels = [x + y for x in letters for y in numbers]

basicstylebasicstyle basicstyle85
basicstylebasicstyle basicstyle86 fig , axarr = plt.subplots (4,5,figsize =(15 ,8))

basicstylebasicstyle basicstyle87 fig.suptitle(’2007 - 2011 Test Results ’, fontsize

basicstylebasicstyle basicstyle=14, fontweight=’bold’)

basicstylebasicstyle basicstyle88 fig.text (0.5, 0.04, ’Confidence Interval ’, ha=’

basicstylebasicstyle basicstylecenter ’)

basicstylebasicstyle basicstyle89 fig.text (0.08, 0.5, ’Default Rate Differential (%)’,

basicstylebasicstyle basicstyleva=’center ’, rotation=’vertical ’)

basicstylebasicstyle basicstyle90
basicstylebasicstyle basicstyle91 for ax, f in enumerate(l):

basicstylebasicstyle basicstyle92
basicstylebasicstyle basicstyle93 arr = pd.read_csv(f).dropna ()

basicstylebasicstyle basicstyle94 arr_np = arr.values

30

basicstylebasicstyle basicstyle95 X = arr_np [: ,2:]

basicstylebasicstyle basicstyle96 Y = np.ravel(np.asarray(arr_np [:,:1], dtype=’d’))

basicstylebasicstyle basicstyle97 default_rate = np.mean(Y)

basicstylebasicstyle basicstyle98
basicstylebasicstyle basicstyle99 results_by_bucket[f] = np.ndarray(shape=(runs ,len(

basicstylebasicstyle basicstyleconfidence_ints)))

basicstylebasicstyle basicstyle100
basicstylebasicstyle basicstyle101 for n in range(0,runs):

basicstylebasicstyle basicstyle102 for count , z in enumerate(confidence_ints):

basicstylebasicstyle basicstyle103
basicstylebasicstyle basicstyle104 X_train , X_test , y_train , y_test =

basicstylebasicstyle basicstylecross_validation.train_test_split(

basicstylebasicstyle basicstyle105 X, Y, test_size =0.33 , random_state=n)

basicstylebasicstyle basicstyle106
basicstylebasicstyle basicstyle107 lda = LDA()

basicstylebasicstyle basicstyle108 lda.fit(X_train , y_train)

basicstylebasicstyle basicstyle109 res = lda.predict_proba(X_test)[0:,1]

basicstylebasicstyle basicstyle110 q = np.percentile(res ,z)

basicstylebasicstyle basicstyle111
basicstylebasicstyle basicstyle112 #j is counter , c is number of non -default

basicstylebasicstyle basicstyleloans , b is num total invested loans

basicstylebasicstyle basicstyle113 j = 0

basicstylebasicstyle basicstyle114 c = 0

basicstylebasicstyle basicstyle115 b = 0

basicstylebasicstyle basicstyle116 for i in res:

basicstylebasicstyle basicstyle117 if i > q:

basicstylebasicstyle basicstyle118 if y_test[j] == 1:

basicstylebasicstyle basicstyle119 c += 1

basicstylebasicstyle basicstyle120 b += 1

basicstylebasicstyle basicstyle121 j += 1

basicstylebasicstyle basicstyle122
basicstylebasicstyle basicstyle123 results_by_bucket[f][n,count] = float(c)/b -

basicstylebasicstyle basicstylenp.mean(Y)

basicstylebasicstyle basicstyle124
basicstylebasicstyle basicstyle125 axarr[ax/5, ax%5]. plot(confidence_ints ,

basicstylebasicstyle basicstyleresults_by_bucket[f][n,:])

basicstylebasicstyle basicstyle126 axarr[ax/5, ax%5]. set_title(lablels[ax])

basicstylebasicstyle basicstyle127 # plt.subplots_adjust(wspace =0.4, hspace =0.4)

31

basicstylebasicstyle basicstyle128
basicstylebasicstyle basicstyle129 # axarr[c/5, c%5]. set_title(’Axis [0,0]’)

basicstylebasicstyle basicstyle130 plt.setp([a.get_xticklabels () for x in range (0,3)

basicstylebasicstyle basicstylefor a in axarr[x, :]], visible=False)

basicstylebasicstyle basicstyle131 plt.savefig("2007 _2011_individual.png")

basicstylebasicstyle basicstyle132 plt.close ()

basicstylebasicstyle basicstyle133
basicstylebasicstyle basicstyle134 cumulative_accuracy = []

basicstylebasicstyle basicstyle135 for n in range(0,len(confidence_ints)):

basicstylebasicstyle basicstyle136 acc = []

basicstylebasicstyle basicstyle137 for bucket in results_by_bucket:

basicstylebasicstyle basicstyle138 acc.append(np.mean(results_by_bucket[bucket],

basicstylebasicstyle basicstyleaxis =0)[n])

basicstylebasicstyle basicstyle139 cumulative_accuracy.append(np.mean(acc))

basicstylebasicstyle basicstyle140 figure = plt.plot(confidence_ints ,

basicstylebasicstyle basicstylecumulative_accuracy)

basicstylebasicstyle basicstyle141 plt.xlabel(’Confidence Interval ’)

basicstylebasicstyle basicstyle142 plt.ylabel(’Default Rate Differential (%)’)

basicstylebasicstyle basicstyle143 plt.title(’Average Decrease in Default Rate’)

basicstylebasicstyle basicstyle144 plt.savefig(’2007 _2011_avg.png’)

basicstylebasicstyle basicstyle145
basicstylebasicstyle basicstyle146 for x in l:

basicstylebasicstyle basicstyle147 plt.subplot ()

basicstylebasicstyle basicstyle148 for i in range(0,runs):

basicstylebasicstyle basicstyle149 print results_by_bucket[x][i]

basicstylebasicstyle basicstyle150 plt.plot(confidence_ints , results_by_bucket[x][i

basicstylebasicstyle basicstyle])

basicstylebasicstyle basicstyle151 plt.yscale(’linear ’)

basicstylebasicstyle basicstyle152 plt.grid(True)

basicstylebasicstyle basicstyle153
basicstylebasicstyle basicstyle154 plt.show()

basicstylebasicstyle basicstyle155
basicstylebasicstyle basicstyle156
basicstylebasicstyle basicstyle157 for i in range(0,len(l)):

basicstylebasicstyle basicstyle158 print "in loan grade " + str(l[i]) + " accuracy =

basicstylebasicstyle basicstyle" + str(acc[i]) + " and proportion selected = "

basicstylebasicstyle basicstyle+ str(select[i])

basicstylebasicstyle basicstyle159 print ""

32

Model creation script 2:

basicstylebasicstyle basicstyle1 # Out -of -sample analysis and model export

basicstylebasicstyle basicstyle2 import matplotlib.pyplot as plt

basicstylebasicstyle basicstyle3 from matplotlib.ticker import MaxNLocator

basicstylebasicstyle basicstyle4 import numpy as np

basicstylebasicstyle basicstyle5 import pandas as pd

basicstylebasicstyle basicstyle6 from sklearn import linear_model

basicstylebasicstyle basicstyle7 from sklearn import cross_validation

basicstylebasicstyle basicstyle8 from sklearn import ensemble

basicstylebasicstyle basicstyle9 from sklearn import svm

basicstylebasicstyle basicstyle10 from sklearn.lda import LDA

basicstylebasicstyle basicstyle11 from scipy import stats

basicstylebasicstyle basicstyle12 from sklearn import grid_search

basicstylebasicstyle basicstyle13 import statsmodels.api as sm

basicstylebasicstyle basicstyle14 import pickle

basicstylebasicstyle basicstyle15
basicstylebasicstyle basicstyle16 base = "/Users/Cameron/Documents/MSE448/Data/Test

basicstylebasicstyle basicstyle/2012/ loan_info_012 -13"

basicstylebasicstyle basicstyle17 suffix = ".csv"

basicstylebasicstyle basicstyle18 letters = ["A", "B", "C", "D"]

basicstylebasicstyle basicstyle19 numbers = ["1", "2", "3", "4", "5"]

basicstylebasicstyle basicstyle20 test_set = [base + x + y + suffix for x in letters

basicstylebasicstyle basicstylefor y in numbers]

basicstylebasicstyle basicstyle21
basicstylebasicstyle basicstyle22 base = "/Users/Cameron/Documents/MSE448/Data/Test

basicstylebasicstyle basicstyle/2007 _2011_week9_"

basicstylebasicstyle basicstyle23 suffix = ".csv"

basicstylebasicstyle basicstyle24 letters = ["a", "b", "c", "d"]

basicstylebasicstyle basicstyle25 numbers = ["1", "2", "3", "4", "5"]

basicstylebasicstyle basicstyle26 train_set = [base + x + y + suffix for x in letters

basicstylebasicstyle basicstylefor y in numbers]

basicstylebasicstyle basicstyle27
basicstylebasicstyle basicstyle28 def_rates = {test_set [0]:.0603 , test_set [1]:.0662 ,

basicstylebasicstyle basicstyletest_set [2]:.0751 , test_set [3]:.079 , test_set

basicstylebasicstyle basicstyle[4]:.089 ,

basicstylebasicstyle basicstyle29 test_set [5]:.0991 , test_set [6]:.1065 , test_set

basicstylebasicstyle basicstyle[7]:.1171 , test_set [8]:.1242 , test_set

33

basicstylebasicstyle basicstyle[9]:.1269 ,

basicstylebasicstyle basicstyle30 test_set [10]:.1349 , test_set [11]:.1427 ,

basicstylebasicstyle basicstyletest_set [12]:.1465 , test_set [13]:.1527 ,

basicstylebasicstyle basicstyletest_set [14]:.1596 ,

basicstylebasicstyle basicstyle31 test_set [15]:.1629 , test_set [16]:.1677 ,

basicstylebasicstyle basicstyletest_set [17]:.1727 , test_set [18]:.1758 ,

basicstylebasicstyle basicstyletest_set [19]:.1825}

basicstylebasicstyle basicstyle32
basicstylebasicstyle basicstyle33 confidence_ints = np.arange (50 ,95 ,2.5)

basicstylebasicstyle basicstyle34
basicstylebasicstyle basicstyle35 results_by_bucket = {}

basicstylebasicstyle basicstyle36
basicstylebasicstyle basicstyle37 letters = ["A", "B", "C", "D"]

basicstylebasicstyle basicstyle38 numbers = ["1", "2", "3", "4", "5"]

basicstylebasicstyle basicstyle39 lablels = [x + y for x in letters for y in numbers]

basicstylebasicstyle basicstyle40
basicstylebasicstyle basicstyle41 fig , axarr = plt.subplots (4,5,figsize =(15 ,8))

basicstylebasicstyle basicstyle42 fig.suptitle(’2012 - 2013 Out of Sample Results ’,

basicstylebasicstyle basicstylefontsize =14, fontweight=’bold’)

basicstylebasicstyle basicstyle43 fig.text (0.5, 0.04, ’Confidence Interval ’, ha=’

basicstylebasicstyle basicstylecenter ’)

basicstylebasicstyle basicstyle44 fig.text (0.08, 0.5, ’Default Rate Differential (%)’,

basicstylebasicstyle basicstyleva=’center ’, rotation=’vertical ’)

basicstylebasicstyle basicstyle45
basicstylebasicstyle basicstyle46 master_y_test = []

basicstylebasicstyle basicstyle47 master_y_res = []

basicstylebasicstyle basicstyle48
basicstylebasicstyle basicstyle49 for ax, f in enumerate(test_set):

basicstylebasicstyle basicstyle50
basicstylebasicstyle basicstyle51 train = pd.read_csv(train_set[ax]).dropna ()

basicstylebasicstyle basicstyle52 train_np = train.values

basicstylebasicstyle basicstyle53 X_train = train_np [:,2:]

basicstylebasicstyle basicstyle54 y_train = np.ravel(np.asarray(train_np [:,:1],

basicstylebasicstyle basicstyledtype=’d’))

basicstylebasicstyle basicstyle55
basicstylebasicstyle basicstyle56 test = pd.read_csv(f).dropna ().replace(to_replace=

basicstylebasicstyle basicstyle’NONE’, value =0).replace(to_replace=’OTHER ’,

basicstylebasicstyle basicstylevalue =0)

34

basicstylebasicstyle basicstyle57 test_np = test.values

basicstylebasicstyle basicstyle58 X_test = test_np [:,3:]

basicstylebasicstyle basicstyle59 y_test = np.ravel(np.asarray(test_np [:,1], dtype=’

basicstylebasicstyle basicstyled’))

basicstylebasicstyle basicstyle60 master_y_test.extend(y_test)

basicstylebasicstyle basicstyle61
basicstylebasicstyle basicstyle62 results_by_bucket[f] = np.empty(len(

basicstylebasicstyle basicstyleconfidence_ints))

basicstylebasicstyle basicstyle63
basicstylebasicstyle basicstyle64 lda = LDA()

basicstylebasicstyle basicstyle65 lda.fit(X_train , y_train)

basicstylebasicstyle basicstyle66 pickle.dump(lda , open("lda_" + str(ax) + ".p", "w"

basicstylebasicstyle basicstyle))

basicstylebasicstyle basicstyle67 res = lda.predict_proba(X_test)[0:,1]

basicstylebasicstyle basicstyle68 pickle.dump(res , open("res_" + str(ax) + ".p", "w"

basicstylebasicstyle basicstyle))

basicstylebasicstyle basicstyle69 master_y_res.extend(res)

basicstylebasicstyle basicstyle70
basicstylebasicstyle basicstyle71 for count , z in enumerate(confidence_ints):

basicstylebasicstyle basicstyle72 q = np.percentile(res ,z)

basicstylebasicstyle basicstyle73
basicstylebasicstyle basicstyle74 #j is counter , c is number of non -default loans ,

basicstylebasicstyle basicstyleb is num total invested loans

basicstylebasicstyle basicstyle75 j = 0

basicstylebasicstyle basicstyle76 c = 0

basicstylebasicstyle basicstyle77 b = 0

basicstylebasicstyle basicstyle78 for i in res:

basicstylebasicstyle basicstyle79 if i > q:

basicstylebasicstyle basicstyle80 if y_test[j] == 1:

basicstylebasicstyle basicstyle81 c += 1

basicstylebasicstyle basicstyle82 b += 1

basicstylebasicstyle basicstyle83 j += 1

basicstylebasicstyle basicstyle84
basicstylebasicstyle basicstyle85 print f

basicstylebasicstyle basicstyle86 print z

basicstylebasicstyle basicstyle87 print float(c)/b

basicstylebasicstyle basicstyle88 print np.mean(y_test)

basicstylebasicstyle basicstyle89 print float(c)/b - np.mean(y_test)

35

basicstylebasicstyle basicstyle90
basicstylebasicstyle basicstyle91 results_by_bucket[f][count] = float(c)/b - np.

basicstylebasicstyle basicstylemean(y_test)

basicstylebasicstyle basicstyle92
basicstylebasicstyle basicstyle93 axarr[ax/5, ax%5]. plot(confidence_ints ,

basicstylebasicstyle basicstyleresults_by_bucket[f])

basicstylebasicstyle basicstyle94 axarr[ax/5, ax%5]. set_title(lablels[ax])

basicstylebasicstyle basicstyle95 # plt.subplots_adjust(wspace =0.4, hspace =0.4)

basicstylebasicstyle basicstyle96
basicstylebasicstyle basicstyle97 # axarr[c/5, c%5]. set_title(’Axis [0,0]’)

basicstylebasicstyle basicstyle98 plt.setp([a.get_xticklabels () for x in range (0,3)

basicstylebasicstyle basicstylefor a in axarr[x, :]], visible=False)

basicstylebasicstyle basicstyle99 plt.show()

basicstylebasicstyle basicstyle100 plt.savefig(’2012 _2013_individual.png’)

basicstylebasicstyle basicstyle101 plt.close ()

basicstylebasicstyle basicstyle102
basicstylebasicstyle basicstyle103 cumulative_accuracy = []

basicstylebasicstyle basicstyle104 for n in range(0,len(confidence_ints)):

basicstylebasicstyle basicstyle105 acc = []

basicstylebasicstyle basicstyle106 for bucket in results_by_bucket:

basicstylebasicstyle basicstyle107 acc.append(results_by_bucket[bucket][n])

basicstylebasicstyle basicstyle108 cumulative_accuracy.append(np.mean(acc))

basicstylebasicstyle basicstyle109 figure = plt.plot(confidence_ints ,

basicstylebasicstyle basicstylecumulative_accuracy)

basicstylebasicstyle basicstyle110 plt.xlabel(’Confidence Interval ’)

basicstylebasicstyle basicstyle111 plt.ylabel(’Default Rate Differential (%)’)

basicstylebasicstyle basicstyle112 plt.title(’Average Decrease in Default Rate’)

basicstylebasicstyle basicstyle113 # plt.savefig (’2012 _2013_avg.png ’)

basicstylebasicstyle basicstyle114 plt.close ()

basicstylebasicstyle basicstyle115
basicstylebasicstyle basicstyle116
basicstylebasicstyle basicstyle117 total_loans_invested = 0

basicstylebasicstyle basicstyle118 non_default = 0

basicstylebasicstyle basicstyle119 const = np.percentile(master_y_res ,90)

basicstylebasicstyle basicstyle120 print const

basicstylebasicstyle basicstyle121 for i in range(0,len(master_y_test)):

basicstylebasicstyle basicstyle122 if np.random.randint (10) == 5 and master_y_res[i]

basicstylebasicstyle basicstyle> const:

36

basicstylebasicstyle basicstyle123 total_loans_invested += 1

basicstylebasicstyle basicstyle124 if master_y_test[i] == 1:

basicstylebasicstyle basicstyle125 non_default += 1

basicstylebasicstyle basicstyle126
basicstylebasicstyle basicstyle127 print non_default/total_loans_invested

basicstylebasicstyle basicstyle128 print np.mean(master_y_test)

37

