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Abstract

Most famous models in finance assume that the stock returns are independant and gaussian. In practice, at
every time scale, we can observe that it is not the case : the returns are fat-tailed and volatility clustering
proves their auto-correlation. Lux and Marchesi proposed a model that can reproduce these stylized facts.
It divides the traders in two categories : the fundamentalists and the chartists. The latter can be either
optimistic or pessimistic. Every trader can change category depending on the comparison between his
past performance and another trader’s when they meet with some probability. The price process is then
determined by the number of chartists (optimistic and pessimistic) and fundamentalists who drive the supply
and demand for a given stock. Our goal is to fit the parameters to intraday financial data in order to predict
these price movements.

1 Overview of the problem

Intraday stylized fact

Lux-Marchesi work focuses on daily data but they did not work on the estimation on their parameters to
realistic data. With the development of algorithmic trading and the possibility to work on high-frequency
data, we decided to focus to intraday data. On these financial data, we can observe the common stylized
facts such fat tails. For instance, we can observe volatility clustering on the stock price of Apple. The
volatility is high just after the opening, quite small at the middle of the day and increases before the close,
as we can see in the following figure. As a result, it is relevant to try to fit Lux-Marchesi model on intraday
data.
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The model

The total number of traders will be noted N . We make the assumption that N is constant on any given day.
The number of chartists and fundamentalists will be respectively nc and nf . The optimistic traders are n+
and the pessimistics n−. We then have : n+ + n− = nc and nc + nf = N . As the traders may change their
view depending on the the majority view, we define the opinion index x = (n+ − n−)/nc.

Among chartists, the transition probabilities between optimistics and pessimistics traders are :{
π+− = µ1

nc

N exp(U1)
π−+ = µ1

nc

N exp(−U1)

with U1 = α1x+α2ṗ where ṗ is the time derivative of the price. Please note we changed a little bit here the
definition of U1 in order to make our task easier.

The probabilities to go from chartists to fundamentalists are:
π+f = µ2

n+

N exp [α3 ∗ ( r+ṗ/µ2

p −R− |pf−pp )]

π−f = µ2
n+

N exp [α3 ∗ (− r+ṗ/µ2

p +R− |pf−pp )]

πf− = µ2
n+

N exp [−α3 ∗ (− r+ṗ/µ2

p +R− |pf−pp )]

πf+ = µ2
n+

N exp [−α3 ∗ ( r+ṗ/µ2

p −R− |pf−pp )]

From there, we can determine the excess demand from chartists and fundamentalists. The price process is
then determined as follows:  EDc = (n+ − n−) ∗ tc

EDf = nfγ(pf − p)
EDtot = EDc + EDf

Elementary price price movement: {
π↑p = max(0, β(ED + µ)
π↓p = min(0, β(ED + µ)

Our assumptions

We will assume that the numbers of optimistics and pessimistics traders are linked respectively with the bid
and the ask in the order book. We will treat as fundamentalists the orders that are in the order book before
the opening. The intuition there is that they are holding longer term positions.

2 Parameters estimation

Our first goal is to estimate the transition matrix, that we will note :

At =

π++ π+− π+f
π−+ π−− π−f
πf+ πf− πff

 (1)

It must satisfy the dynamics nt+1 = Atnt where nt =

n+(t)
n−(t)
nf (t)


There are 3 equations and 6 unknowns (using the fact that At has to be a stochastic matrix) which can not
be solved.
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Model 1: Linear regression

Our first model assumes that A is constant on a given window. This approach is obviously wrong given the
particular forms we gave to our probabilities (they depend on x and ṗ) but is justifiable considering that
empirically, the transition probabilities change very slowly relative to n. We therefore consider it constant
and attempt to fit a linear regression.

Given the parameters described above, we find ourselves with 3 equations adn 6 unknowns. We therefore
use the fact that N = n+ +n−+nf to consider the sub-2x2 matrices of the transition matrix A. We run the
regression on each of those and average results. This method proved to be more robust than a direct brute
force linear regression on all parameters.

We made the assumption that π++, π−−,πff were constant but the figure above shows that although
they remain in a relatively tight range, they are very volatile. The figure on the right, shows that α2 is
practically null, which implies that the transition probabilities depend very little on ṗ.

The figure above representing µ1 and µ2 shows that µ2 is very difficult to estimate and use for the purpose
of predictions because of its volatility. On the contrary, it is is very interesting to see that µ1 is practically
constant (= 0.03) and therefore be used with much precision. Similarly, we can estimate α3 which determines
the transition probabilities with the fundamentalists and β and γ, which will later be used to compute the
excess demand.

Trading strategy

Our trading strategy is built with the following parameters:

• Starting time

• Regression window (30 min)
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• Trading window (10 min)

• Total trading time (200 min)

For each time step t, we regress on the prior 30 mns to estimate all parameters. We then keep those
parameters constant during the trading window (10 min). We use the parameters to compute the number
of each type of traders and then derive the excess demand giving the price movement for the next time step.
According this price movement we great a signal to to enter and exit positions.

Figure 2: Apple

Figure 3: Google

Trading results

For Apple we find a relatively constant and therefore well estimated n. We can howver observe jumps between
different days. We also have the issue that the market’s ṗ is more volatile than the ṗ we compute. Similary,
for Google, the market’s ṗ is very volatile. Therefore, despite having a positive ṗ-estimate, the model doesn’t
capture enough of the realised swings in price. For both stocks, our strategy yields a positive PnL but the
lack of robustness, of the signals leads us to believe that this performance is not very sustainable.

Model 2 : Least-squares estimation

To get a more precise estimation we can use the particular forms of our model. For instance we can see that:

π+−π−+ = µ2
1

n2c
N2

We have also :
π+fπf+ = µ2

2

n+nf
N2

π−fπf− = µ2
2

n−nf
N2

(2)

Assuming we know µ1 and µ2, we have left 6 equations and 6 unknowns which seems to be easier to solve
despite the non linearities.

We will solve the equation nt+1 = Atnt for each time t by minimizing the norm ||nt+1 − Atnt||2. This
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problem has no reason to be convex so we will add a regularization term to help the minimization. This
term will ensure the continuity through time of the probabilities. We will thus be minimizing :

||nt+1 −Atnt||2 + λ||At − Ã||

where Ã is a matrix we want not to deviate too far from, like for instance At−1.

Transition probabilities derivatives estimation

The resulting estimated matrix Â is a function of the intensity parameters µ1 and µ2. Let note A
(t)
µ1,µ2 the

resulting matrix. According to our model, the dependence of A
(t)
µ1,µ2 with respect to µ1 and µ2 has to be

linear. Recall that, for instance, π+− = µ1
nc

N exp(U1), that leads to ∂π+−
∂µ1

= nc

N exp(U1).

Therefore, varying the parameters µ1 and µ2 and processing a new estimate matrix Â
(t)
µ1,µ2 gives a good

estimate of the the dependence of A with those parameters. It is now possible to estimate the derivative of
each entries of the matrix with respect to µ1 and µ2 and therefore get rid of these unknowns.

Let thus note π̂
(t)
+−(µ1, µ2) the value we estimated, i.e. the corresponding entry in the matrix A

(t)
µ1,µ2 . By

inverting the previous formula, we get our estimation of U1 :

Û1
(t)

= log
N

n
(t)
c

∂π̂
(t)
+−

∂µ1

Numerical results

In practice, we can observe that linearity with a big precision which is good. It shows that the way we solve

for the matrix A was consistent with our model. Indeed, here is the plot of π̂
(t)
+−(µ1, µ2) as a function of µ1,

for several values of t.

Moreover, we can see that the slopes does not change a lot during a day and that they are quite con-
tinuous. We also remark that the periods where it changes are correlated with high volatility (just after the
open and just before the close).

Finally, we can do the regression of Û1
(t)

with respect to x(t) and ṗ(t). Here is the plot of the estimated
versus the true values. The R2 score is around 0.85 which means that the regression is quite accurate.

However, we find that the coefficients α1 and α2 have completely different impacts on the movement

of Û1
(t)

and of π+− as a result. Indeed, the regression attributes much more weight to x(t) than to ṗ(t) as
α1 is in the order of magnitude of 1 and α2 is in the order of magnitude of 0.01. After taking a closer look
at the data, we noticed that ṗ(t) varies much faster than π+− and x(t). We therefore tried to smooth ṗ(t) by
taking the moving average of prices. After running the regression again, this increased the α2 by one order
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of magnitude to approximately 0.1 which is still extremely small. This would suggest that ṗ(t) has very
little impact on the short term transition probabilities π+− and π−+ relative to x(t). We also noticed that
these seem to be much more correlated to the variation of p(t), or the volatility, than that of ṗ(t).

3 Hypothesis test

In this section, we will focus on testing the various hypothesis we have made.

Frequency of revaluation of opinion µ1

One of the strongest hypothesis we have done in this model is supposing that the frequency of revaluation
of opinion µ1 is a constant over time. Therefore, in this case, we can suppose that over a short period of
time, the transition probabilities will only depend on the number of chartists (optimists and pessimists) and
the number of fundamentalists. In order to check this hypothesis, we have reverse engineered µ1 based on
forward looking data. In order to simplify the calculus, we focus only on chartists ( this hypothesis is not
too strong as µ1 should only depend on n+ and n− cf initial equations). Using transition probabilities, we
have the following equations :
Let’s write d = nc

N exp(U1) which we have estimated previously. π+− = µ1d
π−+ = µ1(nc

N )2( 1
d )

n−(t+ 1) = π−+n+(t) + (1− π+−)n−(t)

Which gives us the following equation for µ1(t)

µ1(t) =
n−(t+ 1)− n−(t)

(nc

N )2( 1
d )n+(t)− dn−(t)

The following graph represents the result obtained

The hypothesis we have done on µ1 being a constant is clearly wrong. It can be explained by the fact that
our model considers the whole number of traders N to be a constant, i.e that the traders are living in a
closed environment. However in reality, the number of traders varies with new traders on the market and
traders leaving the market every minutes.
Another explanation is that the quantity

n−(t+ 1)− n−(t)

n+(t+ 1)− n+(t)
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Back engineering of µ1 as a function of t

is not constant (should be equal to 1 under the above hypothesis). Therefore, in our model, it is not possible
to estimate µ1 independently of the number of fundamentalists.

Conclusion

In this paper, we successfully estimated parameters based on Lux-Marchesi’s equations. We verified that
the transition probabilities (π+− and π−+) are linear in µ1 and µ2 as postulated by the paper. However,
we empirically realised that these transition probabilities are very volatile, particularly on an intraday scale.
Our results also show that the transition probabilities are not very dependent on dotp. As a result, this
model appears to be too theoretic and complicated to fit to real life price processes, specifically on a short
term time scale. We also found ourselves needing to make too many assumptions on the data. The inability
to track individual orders put by individual traders results in imprecisions. For example, if 10 traders enter
the market and 10 traders exit, our model will not factor in anything when in reality the market has changed.
We did notice some interesting behaviours in that the variation of the slope of the function of the transition
probabilities with respect to µ1 seems to be correlated with volatility. This relationship could be investigated
in future research.
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