1 Introduction

Iterative methods for solving linear systems $Ax = b$ become necessary when $A \in \mathbb{R}^{n \times n}$ is too large to factorize directly. The meaning of too large depends on the context, but $n = 10000$ up to $n = 10^8$ is typical. In optimization, the following symmetric (but possibly indefinite) examples arise in computing search directions:

- Newton’s method for unconstrained optimization: $H\Delta x = -g$ (where g and H are the gradient and Hessian of the objective function).
- Newton’s method for optimization with linear constraints $Jx = b$: Solve $Z^T H Z \Delta v = -Z^T g$ and set $\Delta x = Z v$, where Z spans the null space of the constraint matrix ($JZ = 0$).
- KKT systems with linearized constraints: $(-H \ J^T) \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = \begin{pmatrix} g - J^T y \\ -c - Jx \end{pmatrix}$.

The conjugate-gradient method (CG) is the prototype solver for $Ax = b$ when A is symmetric and positive definite (spd). Distinguishing features of CG follow:

- A is regarded as an operator. For various vectors v, CG asks for the matrix-vector product $y = Av$. This is the only way that A is defined. The first v is a multiple of b.
- Only a few work n-vectors of storage are needed to generate each approximate solution x_k ($k = 1, 2, \ldots$).
- With exact arithmetic, CG would terminate in at most n iterations. In practice it may need far fewer iterations if A has clustered eigenvalues, or far more if we are not so lucky. Of course the first situation is preferable.
- Favorable eigenvalue distributions can be achieved by finding a preconditioner M such that $M = CC^T \approx A$ (in some sense) and solving a transformed system $\bar{A}\bar{x} = \bar{b}$, where \bar{A} is the operator $C^{-1}AC^{-T} \approx I$ and the remaining quantities are obtained by solving $C\bar{b} = b$ and $C^T\bar{x} = \bar{x}$.
- The matrix-vector product $y = \bar{A}v$ means “Solve $C^T w_1 = v$, form $w_2 = Aw_1$, and solve $C y = w_2$.” Thus it must be possible to solve with C and C^T reasonably efficiently (as well as multiplying by A). The simplest example is diagonal preconditioning with $C = \text{diag}(\sqrt{A_{jj}})$.
- PCG (preconditioned CG) is a rearrangement of CG that allows solves with M itself, rather than C and C^T separately. Diagonal preconditioning then means working with the preconditioner $M = \text{diag}(A)$.

2 Lanczos-based methods for symmetric systems

We review three methods for solving symmetric systems $Ax = b$. As described in [11], the methods CG, MINRES, and SYMMLQ are based on the Lanczos process [8] for tridiagonalizing A. A helpful framework for viewing such methods was suggested by Paige [10]:

An iterative process generates certain quantities from the data. At each iteration a subproblem is defined, suggesting how those quantities may be combined to give a new estimate of the required solution. Different subproblems define different methods for solving the original problem. Different ways of solving a subproblem lead to different implementations of the associated method.
Typically the subproblems may be solved efficiently and stably (though stability questions are sometimes overlooked). The numerically difficult aspects are usually introduced by the process.

2.1 Existence

The Lanczos process is an iterative form of the symmetric orthogonal tridiagonalization $V^T AV = T$, derivable from the existence of the slightly larger tridiagonalization

$$
\begin{pmatrix}
1 & V^T \\
V & 0
\end{pmatrix}
\begin{pmatrix}
b & 0 \\
A & b^T
\end{pmatrix}
\begin{pmatrix}
1 \\
V
\end{pmatrix}
=
\begin{pmatrix}
0 & \beta_1 e_1^T \\
\beta_1 e_1 & T
\end{pmatrix},
$$

(1)

where V could be a product of $n - 1$ Householder matrices. From (1) we know that there exists an orthogonal V such that

$$
\begin{pmatrix}
b & b^T \\
A & V
\end{pmatrix}
\begin{pmatrix}
1 \\
V
\end{pmatrix}
=
\begin{pmatrix}
0 \\
\beta_1 e_1^T
\end{pmatrix},
$$

(2)

$$
\Rightarrow
\begin{pmatrix}
b & b^T V \\
A V & V
\end{pmatrix}
\begin{pmatrix}
0 \\
\beta_1 e_1
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
b \\
AV
\end{pmatrix}
=
\begin{pmatrix}
\beta_1 e_1 \\
VT
\end{pmatrix},
$$

where $T = \text{tridiag}(\beta_k, \alpha_k, \beta_{k+1})$ with $v_0 = v_{n+1} \equiv 0$, the kth column of $AV = VT$ gives $Av_k = \beta_k v_{k-1} + \alpha_k v_k + \beta_{k+1} v_{k+1}$ for $k = 1, 2, \ldots, n$.

2.2 The Lanczos process (orthogonal tridiagonalization)

Tridiag(A, b) → (T_k, V_k) denotes the following process. Given a symmetric matrix A and a starting vector b, the Lanczos process generates vectors v_k and scalars α_k, β_k ($k = 1, 2, \ldots$) according to these steps (with $v_0 \equiv 0$):

1. Set $\beta_1 v_1 = b$. (This means $\beta_1 \leftarrow \|b\|_2$ and then $v_1 \leftarrow b/\beta_1$, but exit if $\beta_1 = 0$.)

2. For $k = 1, 2, \ldots, \ell$ set

$$
\begin{align*}
& w = Av_k \\
& \alpha_k = v_k^T w \\
& \beta_k v_{k+1} = w - \alpha_k v_k - \beta_k v_{k-1}
\end{align*}
$$

After k steps with $\beta_1, \ldots, \beta_k > 0$, the situation may be summarized as

$$
AV_k = V_k T_k + \beta_{k+1} v_{k+1} e_k^T = V_{k+1} H_k,
$$

(2)

where e_k is the kth unit vector, $V_k = (v_1 \ v_2 \ \ldots \ v_k)$, T_k is tridiagonal, and H_k is also tridiagonal with one extra row:

$$
T_k = \begin{pmatrix}
\alpha_1 & \beta_2 & \beta_3 & \ldots & \beta_k \\
\beta_2 & \alpha_2 & \beta_3 & \ldots & \\
\beta_3 & \beta_2 & \alpha_2 & \ldots & \\
& \ddots & \ddots & \ddots & \ddots \\
& \beta_k & \alpha_k & \ldots & \beta_2 \\
\beta_k & \alpha_k & \ldots & \beta_2 & \alpha_2
\end{pmatrix}, \\
H_k = \begin{pmatrix}
\alpha_1 & \beta_2 & \beta_3 & \ldots & \beta_k \\
\beta_2 & \alpha_2 & \beta_3 & \ldots & \\
\beta_3 & \beta_2 & \alpha_2 & \ldots & \\
& \ddots & \ddots & \ddots & \ddots \\
& \beta_k & \alpha_k & \ldots & \beta_2 \\
& \beta_k & \alpha_k & \ldots & \beta_2 & \alpha_2
\end{pmatrix} = \begin{pmatrix} T_k \\
\beta_{k+1} e_k^T
\end{pmatrix}.
$$

In exact arithmetic, the columns of V_k are orthonormal and the process stops with $k = \ell$ and $\beta_{\ell+1} = 0$ for some $\ell \leq n$, and then $AV_k = V_k T_k$. For derivation purposes we assume that this happens, though in practice it is unlikely unless v_{k+1} is reorthogonalized with respect to V_k at each iteration. In any case, (2) holds to machine precision and the computed vectors satisfy $\|V_k\|_1 \approx 1$ (even if $k \gg n$).
2.3 Properties of the Lanczos process

From the way the Lanczos vectors are generated, it is clear that v_k lies in the Krylov subspace $K_k(A, b) \equiv \text{span}\{b, Ab, A^2b, \ldots, A^{k-1}b\}$. The following properties can be proved:

1. If A is changed to $A - \sigma I$ for some scalar shift σ, T_k becomes $T_k - \sigma I$ and V_k is unaltered, showing that singular systems are commonplace. Shifted problems appear in inverse iteration or Rayleigh quotient iteration.

2. If A is positive definite, so is T_k for all k.

3. If A is indefinite, some T_k might be singular, but then by the Sturm sequence property (see [7]), T_k has exactly one zero eigenvalue and the strict interlacing property implies that $T_{k\pm 1}$ are nonsingular. Hence T_k cannot be singular twice in a row (whether A is singular or not).

4. H_k has full column rank k for all $k < \ell$.

5. T_ℓ is nonsingular if and only if $b \in \text{range}(A)$.

2.4 CG, MINRES, and SYMMLQ

Table 1 lists three ways to choose “optimal” points within each Krylov subspace K_k (i.e., points of the form $x_k = V_ky_k$ for some vector y_k). The three choices lead to three methods for solving $Ax = b$, namely CG, MINRES, and SYMMLQ. Note that the CG method is not meaningful if the quadratic form is unbounded below. This means that A must be positive-definite for CG.

From (2) we see that the residual vector associated with a point $x_k \in K_k$ is

$$r_k \equiv b - Ax_k$$

$$= \beta_1 v_1 - AV_ky_k$$

$$= V_{k+1}(\beta_1 e_1 - H_ky_k)$$

$$= V_{k+1}t_{k+1},$$

where $t_{k+1} \equiv \beta_1 e_1 - H_ky_k$. (5)

This suggests that $\|r_k\|$ will be small if y_k makes t_{k+1} small by some measure. Indeed, we find that Table 1’s subproblems for x_k lead to the corresponding subproblems for y_k shown in Table 2 (which also shows the factorizations needed to solve the subproblems). The CG subproblem makes $t_{k+1} = 0$ everywhere except its last element, while the MINRES subproblem is more balanced in minimizing $\|t_{k+1}\|$. The SYMMLQ subproblem makes $t_{k+1} = 0$ everywhere except its last two elements, while keeping $\|y_k\|$ as small as possible.

Table 1: Minimization properties for three methods for solving $Ax = b$. They seek points $x_k = V_ky_k$ that give small residual vectors $r_k \equiv b - Ax_k$.

<table>
<thead>
<tr>
<th>Method</th>
<th>Definition of optimal x_k in Krylov subspace</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG</td>
<td>$\min \frac{1}{2} x_k^T Ax_k - b^T x_k$ s.t. $x_k \in K_k$</td>
</tr>
<tr>
<td></td>
<td>$\equiv \min |r_k|^2_A$ s.t. $x_k \in K_k$</td>
</tr>
<tr>
<td>MINRES</td>
<td>$\min |r_k|^2$ s.t. $x_k \in K_k$</td>
</tr>
<tr>
<td>SYMMLQ</td>
<td>$\min |x_k|^2$ s.t. $x_k \in K_k, r_k \perp K_{k-1}$</td>
</tr>
<tr>
<td></td>
<td>$\equiv \min |x - x_k|^2$ s.t. $x_k \in AK_{k-1}$</td>
</tr>
</tbody>
</table>
Table 2: Subproblems defining y_k and $x_k = V_k y_k$ for four methods.

<table>
<thead>
<tr>
<th>Method</th>
<th>Subproblem</th>
<th>Factorization</th>
<th>Estimate of x</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG</td>
<td>$T_k y_k = \beta_1 e_1$</td>
<td>$T_k = L_k D_k L_k^T$</td>
<td>$x^C_k = V_k y_k$</td>
</tr>
<tr>
<td>MINRES</td>
<td>$\min |H_k y_k - \beta_1 e_1|$</td>
<td>$Q_k H_k = \begin{pmatrix} R_k \ 0 \end{pmatrix}$</td>
<td>$x^M_k = V_k y_k$</td>
</tr>
<tr>
<td>SYMMLQ</td>
<td>$\min |y_k|$ s.t. $H_{k-1}^T y_k = \beta_1 e_1$</td>
<td>$H_{k-1}^T Q_{k-1}^T = \begin{pmatrix} L_{k-1} \ 0 \end{pmatrix}$</td>
<td>$x^L_k = V_k y_k$</td>
</tr>
<tr>
<td>MINRES-QLP</td>
<td>$\min |y_k|$ s.t. $H_k y_k - \beta_1 e_1 = \min$</td>
<td>$Q_k H_k = \begin{pmatrix} R_k \ 0 \end{pmatrix}$</td>
<td>$x^Q_k = V_k y_k$</td>
</tr>
</tbody>
</table>

Table 3: Definition of W_k, \bar{W}_k, z_k, \bar{z}_k such that $x_k = V_k y_k = W_k z_k$ or $\bar{W}_k \bar{z}_k$.

<table>
<thead>
<tr>
<th></th>
<th>W_k</th>
<th>z_k</th>
<th>Estimate of x</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG</td>
<td>$V_k L_k^{-T}$</td>
<td>$L_k D_k z_k = \beta_1 e_1$</td>
<td>$x^C_k = W_k z_k$</td>
</tr>
<tr>
<td>MINRES</td>
<td>$V_k R_k^{-1}$</td>
<td>$\begin{pmatrix} z_k \ \bar{\zeta}_{k+1} \end{pmatrix} = Q_k \begin{pmatrix} \beta_1 e_1 \ 0 \end{pmatrix}$</td>
<td>$x^M_k = W_k z_k$</td>
</tr>
<tr>
<td>SYMMLQ</td>
<td>$\bar{W}k = V_k Q{k-1}$</td>
<td>$L_{k-1} z_{k-1} = \beta_1 e_1$</td>
<td>$x^L_k = \bar{W}_k \bar{z}_k$</td>
</tr>
<tr>
<td>MNRES-QLP</td>
<td>$\bar{W}_k = V_k P_k$</td>
<td>$\bar{L}_k \bar{z}_k = z_k$</td>
<td>$x^Q_k = \bar{W}_k \bar{z}_k$</td>
</tr>
</tbody>
</table>

If A is positive definite, each T_k is theoretically positive definite and CG can obtain Cholesky factors $T_k = L_k D_k L_k^T$. MINRES uses the QR factorization of H_k, and is applicable to any symmetric A (including singular systems if suitable stopping criteria are implemented). SYMMLQ uses the same QR factorization, disguised as the LQ factorization of H_k^T, and is again applicable to any symmetric A, except that $Ax = b$ must be consistent. MINRES-QLP works with a two-sided orthogonal factorization of H_k for greater reliability on ill-conditioned or singular systems (see Choi [1], Choi et al. [2]). The QLP name comes from Stewart [18].

Note that all elements of y_k may change in y_{k+1}. Also, we don’t wish to store all of V_{k+1} in order to form $V_{k+1} y_{k+1}$. Thus, each method computes certain quantities W_k and z_k that allow the solution estimates to be updated. Table 3 shows all the possibilities we can think of. (Tables 2–3 are from [15], except for the more recent MINRES-QLP entries.)

Also note that $V_k (\beta_1 e_1) = b$ exactly for all k because v_1 is a multiple of b. Thus, the relations $r_k = V_{k+1} t_{k+1}$ (4) and $t_{k+1} = \beta_1 e_1 - H_k y_k$ (5) hold accurately for any y_k even though the columns of V_{k+1} lose orthogonality. Since

$$\|r_k\| \leq \|V_{k+1}\| \|\beta_1 e_1 - H_k y_k\|$$

with $\|V_{k+1}\| = O(1)$ and $\|\beta_1 e_1 - H_k y_k\|$ tending to decrease for the given choices of y_k, we can expect $\|r_k\|$ to become small eventually.
The CG iteration CG treats $T_ks_k = \beta_1e_1$ as $L_kD_k(L_k^Ty_k) = \beta_1e_1$, defines $z_k \equiv L_k^Ty_k$, and solves the lower-triangular systems

$$L_kD_kz_k = \beta_1e_1, \quad z_k = \begin{pmatrix} z_{k-1} \\ \zeta_k \end{pmatrix}$$

$$L_kW_k^T = V_k^T, \quad W_k^T = \begin{pmatrix} W_{k-1}^T \\ w_k^T \end{pmatrix}$$

by computing only the last elements of the solutions at each iteration k, taking advantage of the fact that the preceding parts of z_k and W_k have already been computed. For example, since L_k is lower bidiagonal with unit diagonals, we can form $w_k = v_k - \lambda_kw_{k-1}$ efficiently, where λ_k is the $(k, k-1)$ element of L_k. Thus,

$$x_k = V_ky_k = W_kL_k^Ty_k = W_kz_k = W_{k-1}z_{k-1} + w_k\zeta_k = x_{k-1} + \zeta_kw_k$$

can also be formed cheaply. The vectors in V_{k-2} and W_{k-1} are no longer needed.

Although we don’t want all of y_k, we see from $L_k^Ty_k = z_k$ that the last element of y_k is $\eta_k = \zeta_k$. Also from (4)–(5) and the fact that CG makes t_{k+1} zero except for its last element $t_{k+1} \equiv \tau_{k+1}/\tau_{k+1}$, we see that the CG residual vector satisfies $r_k^C = \tau_{k+1}y_{k+1}$ and hence $\|r_k^C\| = |\tau_{k+1}| = | - \beta_{k+1}\eta_k | = |\beta_{k+1}\zeta_k|$. Thus when CG is implemented this way, we have an accurate estimate of $\|r_k^C\|$ at essentially no cost.

The MINRES iteration By definition, the MINRES point x_k^M solves the problem

$$\min_{y_k} \|r_k\| \text{ such that } x_k = V_ky_k,$$

so that $\|r_k^M\|$ decreases monotonically as long as the columns of V_k remain independent. (Remember they are theoretically orthonormal.) Many users prefer MINRES for this reason. To allow for inconsistent systems, the stopping rule must check both $\|r_k\|$ and $\|Ar_k\|$. The iteration is similar to CG in solving $R_k^TW_k^T = V_k^T$ for each w_k in turn and updating $x_k = x_{k-1} + \zeta_kw_k$. There is more work and storage because R_k^T is lower tridiagonal. A numerical concern is that the columns of $W_k = V_kR_k^{-1}$ could be large if some of the R_k are ill-conditioned.

If A is positive definite, we now know that $\|x_k^M\|$ is monotonically increasing (Fong [3, 5]), so there should not be significant cancellation error in forming $x_k^M = x_{k-1} + \zeta_kw_k$. But there does seem to be a risk of cancellation when A is indefinite. This risk is avoided by MINRES-QLP (see below).

To see how the QR factorization $Q_k (H_k \quad \beta_1e_1) = \begin{pmatrix} R_k \\ 0 \end{pmatrix} (\zeta_{k+1} \quad \zeta_k)$ proceeds, consider the effect of the first plane rotation when $k = 4$:

\[
\begin{pmatrix} c_1 & s_1 \\ -c_1 & s_1 \end{pmatrix} \begin{pmatrix} \alpha_1 & \beta_2 & \beta_1 \\ \beta_2 & \alpha_2 & \beta_3 \\ \beta_3 & \alpha_3 & \beta_4 \\ \beta_4 & \alpha_4 & \beta_5 \end{pmatrix} = \begin{pmatrix} \rho_1 & \sigma_2 & \tau_3 & \zeta_1 \\ \beta_2 & \sigma_3 & \bar{\zeta}_2 & \beta_3 \\ \beta_3 & \sigma_4 & \beta_4 & \beta_4 \\ \beta_4 & \sigma_5 & \beta_5 & \beta_5 \end{pmatrix},
\]

where

\[
\begin{align*}
\rho_1 &= \sqrt{\alpha_1^2 + \beta_2^2} & \sigma_2 &= c_1\beta_2 + s_1\alpha_2 & \tau_3 &= s_1\beta_3 & \zeta_1 &= c_1\beta_1 \\
c_1 &= \alpha_1/\rho_1 & s_1 &= \beta_2/\rho_1 & \rho_2 &= s_1\beta_2 - c_1\alpha_2 & \sigma_3 &= -c_1\beta_3 & \bar{\zeta}_2 &= s_1\beta_1
\end{align*}
\]
and barred items will become unbarred after the second rotation:

\[
\begin{pmatrix}
1 & c_2 & s_2 \\
1 & s_2 - c_2 \\
\end{pmatrix}
\begin{pmatrix}
\rho_1 & \sigma_2 & \tau_3 & \zeta_1 \\
\rho_2 & \sigma_3 & \tau_4 & \zeta_2 \\
\beta_3 & \alpha_3 & \beta_4 & 0 \\
\beta_4 & \alpha_4 & 0 & \beta_5 \\
\end{pmatrix}
\begin{pmatrix}
1 & \rho_1 & \sigma_2 & \tau_3 & \zeta_1 \\
1 & \rho_2 & \sigma_3 & \tau_4 & \zeta_2 \\
\beta_3 & \rho_3 & \sigma_4 & \tau_3 & \zeta_3 \\
\beta_4 & \rho_4 & \sigma_4 & 0 & \zeta_5 \\
\end{pmatrix}.
\]

Similarly,

\[
\begin{pmatrix}
1 & c_3 & s_3 \\
1 & s_3 - c_3 \\
\end{pmatrix}
\begin{pmatrix}
\rho_1 & \sigma_2 & \tau_3 & \zeta_1 \\
\rho_2 & \sigma_3 & \tau_4 & \zeta_2 \\
\beta_3 & \rho_3 & \sigma_4 & \zeta_3 \\
\beta_4 & 0 & \zeta_5 \\
\end{pmatrix}
\begin{pmatrix}
1 & \rho_1 & \sigma_2 & \tau_3 & \zeta_1 \\
1 & \rho_2 & \sigma_3 & \tau_4 & \zeta_2 \\
\beta_3 & \rho_3 & \sigma_4 & \tau_3 & \zeta_3 \\
\beta_4 & 0 & \rho_4 & \zeta_4 & \zeta_5 \\
\end{pmatrix}.
\]

and finally

\[
\begin{pmatrix}
1 & c_4 & s_4 \\
1 & s_4 - c_4 \\
\end{pmatrix}
\begin{pmatrix}
\rho_1 & \sigma_2 & \tau_3 & \zeta_1 \\
\rho_2 & \sigma_3 & \tau_4 & \zeta_2 \\
\rho_3 & \sigma_4 & \zeta_3 \\
\rho_4 & \zeta_4 & \zeta_5 \\
\end{pmatrix}
\begin{pmatrix}
1 & \rho_1 & \sigma_2 & \tau_3 & \zeta_1 \\
1 & \rho_2 & \sigma_3 & \tau_4 & \zeta_2 \\
\rho_3 & \rho_4 & \zeta_3 & \zeta_5 \\
\end{pmatrix}.
\]

In particular, we see that \(\bar{e}_{k+1} = s_k \bar{e}_k = s_k s_{k-1} \ldots s_1 \beta_1 \) is monotonically decreasing. This is the residual norm for the least-squares problem \(\min \| \mathbf{y} \| \) so that the error norm \(\| \mathbf{r}^M \| = \| \mathbf{t}_{k+1} \| = \bar{e}_{k+1} \), which is cheaply available.

The SYMMLQ iteration In contrast to MINRES, SYMMLQ’s point \(x_k^L \) solves

\[
\min_{y_k} \| x_k \| \text{ such that } x_k = V_k y_k \text{ and } V_k^T r_k = 0,
\]

so that \(\| x_k \| \) increases and the system must be consistent (\(\| r_k^M \| \to 0 \)). It also solves

\[
\min_w \| x - x_k \| \text{ such that } x_k = A V_{k-1} w
\]

[6, 9], so that the error norm \(\| x - x_k^L \| \) decreases monotonically.

The SYMMLQ solutions \(x_k^L = W_{k-1} \bar{z}_{k-1} = x_{k-1}^L + \bar{z}_{k-1} w_{k-1} \) are accumulated as a sequence of theoretically orthogonal steps. Although the columns of \(V_k \) and \(W_{k-1} \) are not likely to be orthonormal in practice, we will always have \(\| w_{k-1} \| \approx 1 \) with \(\| x_k^L \| \) increasing, so that forming \(x_k^L \) should involve very little cancellation error, even if \(A \) is indefinite.

By observation, \(\| r_k \| \) is often much larger for SYMMLQ than for the other methods. This is not cause for concern. It’s a sign that SYMMLQ is stepping around points that would be troublesome for CG. Since the residual norms can be estimated cheaply, SYMMLQ has provision for transferring to the CG point upon termination if the residual is then smaller. Thus, if \(\| r_k^L \| < \| r_k^L \| \), SYMMLQ takes a final step of the form \(x_k^C = x_k^L + \bar{z}_k w_k \), where the last two items are already known.

Note that after \(k \) iterations, SYMMLQ has solved a single triangular system \(L_{k-1} \bar{z}_{k-1} = \beta_1 e_1 \), and this is the only place where ill-conditioning in \(A \) becomes evident while \(k < \ell \). (At the end with \(\beta_{k+1} \) theoretically zero, the condition of \(T\ell \) is critical, but SYMMLQ reaches \(x_k^L \) in the safest way.) We therefore believe that SYMMLQ is the method of choice for indefinite consistent systems. MINRES-QLP should be comparable in reliability at the cost of slightly more work and storage per iteration, and it handles singular systems well.
MINRES-QLP The effects of rounding errors on the convergence of CG, MINRES, and SYMMLQ have been analyzed by Sleijpen et al. [16]. Some numerical examples confirm that MINRES may not achieve small $\|r_k\|$ on consistent systems when A is very ill-conditioned.

MINRES-QLP is the only method that returns the minimum-length solution on singular inconsistent systems $Ax \approx b$. It is significantly more complex (see Choi [1]) but can be more reliable than MINRES when A is ill-conditioned. In [1] it is anticipated that the rounding errors in MINRES’s solution of the n independent ill-conditioned triangular systems $R_k^T W_k^T = V_k^T$ (i.e., in the n rows of W_k) are more significant than in MINRES-QLP’s solution of the single ill-conditioned system $L_k \tilde{z}_k = z_k$, as in SYMMLQ’s $L_{k-1} z_{k-1} = \beta_1 e_1$.

2.5 Estimation of norms

At iteration k of the above solvers, estimates of $\|r_k\|$, $\|Ar_k\|$, $\|x_k\|$, $\|A\|$, and $\text{cond}(A)$ are needed in order to implement reliable stopping rules. The estimates have been studied most fully for MINRES and MINRES-QLP in Choi [1]. In particular, $\|A\|_2 \approx \|T_k\|_2$ or $\|H_k^T H_k\|^{1/2}$ are reasonable estimates that can be estimated cheaply as the iterations proceed. Different solvers estimate the other quantities in various ways.

2.6 Stopping rules

An approximation solution x_k may be regarded as acceptable if it is the exact solution for a slightly different problem (with A and b perturbed). This is the backward error point of view. For consistent systems $Ax = b$ with uncertainty in A and b, we will see in the next chapter) that we can stop if

$$\|r_k\| \leq \alpha \|A\| \|x_k\| + \beta \|b\|$$

(6)

for some user-specified tolerances that reflect the uncertainty in A and b (e.g., $\alpha = \beta = \text{tol} = 10^{-4}$, 10^{-8}, or 10^{-12} respectively for moderate, accurate, or very accurate solutions using 15-digit arithmetic). For inconsistent problems where $\|r_k\| / \|b\| \to 0$, a good stopping rule for MINRES and MINRES-QLP is

$$\|Ar_k\| \leq \alpha \|A\| \|r_k\|.$$

(7)

This is a special symmetric version of Stewart’s result [17] for rectangular least-squares problems $\min \|Ax - b\|$, also used in the next chapter. The norms required in tests (6)–(7) can be estimated cheaply as the iterations proceed. Fortunately, the estimates of $\|r_k\|$ and $\|Ar_k\|$ are remarkably accurate until one of them approaches zero, and even then one of them is small enough to indicate termination.

Note that stopping rule (6) is equivalent to stopping if $\psi_k \equiv \|r_k\|/(\alpha \|A\| \|x_k\| + \beta \|b\|) \leq 1$. On positive definite $Ax = b$, ψ_k is monotonically decreasing for MINRES (because $\|r_k^M\|$ and $\|x_k^M\|$ are monotonic), and empirically becomes significantly smaller than ψ_k for CG. Hence, we believe that MINRES is often preferable to CG in the sense that it can stop sooner.

2.7 Cautions

The methods described above are reliable in practice, even though the columns of V_k soon become far from orthonormal. The work and storage per iteration are constant and minimal ($O(n)$). The main question remaining is, how many iterations will be required? We hope for far fewer than n iterations, but it could be $5n$ or $10n$ or even more.

If reorthogonalization were used to maintain orthonormal V_k, the iterations would be bounded by n (and more precisely by the number of clusters in the eigenvalue of A). However, all of the vectors v_k would need to be stored, and the work and storage would grow quadratically. We consider this not an option in general (although it is tolerated with GMRES [14]).

Many authors present equation (2) correctly, but then derive further results from two equations that don’t hold unless full reorthogonalization is used. We emphasize that there
is no need to assume that $V_k^T A V_k = T_k$ and/or $V_k^T b = \beta_1 e_1$, which quickly cease to be true without reorthogonalization of V_k. Luckily, equations (2) and (4) are sufficient as they stand. Similarly, many authors allow an approximate solution x_0 to be provided, and proceed to update the solution inside the solver when it is applied to the system $A d = r_0$, where $r_0 = b - A x_0$ and $x = x_0 + d$. Compare the implementations

$$x \leftarrow x_0 \quad \text{for } k = 1 : K, \quad x \leftarrow x + \text{ correction}, \quad \text{end}$$
$$d \leftarrow 0 \quad \text{for } k = 1 : K, \quad d \leftarrow d + \text{ correction}, \quad \text{end} \quad x = x_0 + d.$$ The first choice is not recommended when x_0 is a good approximation, because the x corrections could be small relative to x_0 and many significant digits could be lost. The second choice is safer, at the cost of storing x_0 elsewhere. For this choice, we need to be conscious of solving $A d = r_0$ when choosing stopping tolerances. If anything is to be gained from x_0, we need looser tolerances than if we were solving $A x = b$ itself.

Moral: The MATLAB iterative solvers use $\alpha = 0$ and $\beta = \text{tol}$. If you have a good x_0, always input $b = r_0$ and $x_0 = 0$ and solve $A d = r_0$ with loose tolerance tol^0, then form $x = x_0 + d$. It is hard to guess the tolerance, but perhaps it could be $\text{tol}^0 = \text{tol} \times \|b\|/\|r_0\|$. Simple solution: Our own implementations of the iterative solvers enforce caution by not allowing x_0 to be input. To help future users we could accept x_0, compute $r_0 = b - A x_0$, and note that the residuals for $Ad = r_0$ and $Ax = b$ are the same: $r_k = r_0 - A d_k = b - A (x_0 + d_k)$. Hence, although the solver is computing iterates d_k for solving $Ad = r_0$, we can estimate $\|r_k\|$ cheaply and we can also compute $\|x_k\| = \|x_0 + d_k\|$ for use in (6).

2.8 Augmented systems

The following symmetric system underlies several methods for more general problems:

$$\tilde{A}_{\gamma, \delta} \tilde{x} = \tilde{b} \quad \equiv \quad \begin{pmatrix} \gamma I & A \\ A^T & \delta I \end{pmatrix} \begin{pmatrix} s \\ x \end{pmatrix} = \begin{pmatrix} b \\ 0 \end{pmatrix}, \quad (8)$$

where A is a square or rectangular matrix and γ, δ are specified scalars. The Lanczos process Tridiag($\tilde{A}_{\gamma, \delta}, \tilde{b}$) has a special structure that is interesting to observe. After $2k$ steps it generates

$$T_{2k} = \begin{pmatrix} \gamma & \alpha_1 & \beta_1 \\ \alpha_1 & \delta & \beta_2 \\ \beta_1 & \beta_2 & \gamma & \alpha_2 \\ & \ddots & \ddots & \ddots \\ & & \beta_k & \gamma & \alpha_k \\ & & & \alpha_k & \delta \end{pmatrix}, \quad V_{2k} = \begin{pmatrix} u_1 & u_2 & \ldots & u_k \\ v_1 & v_2 & \ldots & v_k \end{pmatrix},$$

and the next step gives T_{2k+1}, V_{2k+1} in the obvious way. We find that the scalars α_k, β_k and vectors u_k, v_k are independent of γ and δ. We can therefore generate them with $\gamma = \delta = 0$. However, that case is more efficiently generated by the Golub-Kahan process Bidiag(A, b) described later.

For certain choices of γ and δ, the subproblems associated with CG and MINRES can also be rearranged to improve efficiency, leading to algorithms CRAIG ($\gamma = \delta = 0$) [12], LSQR and LSMSR ($\gamma = 1, \delta = 0$ or $\gamma = -\delta \neq 0$) [12, 13, 4], and AMRES ($\gamma = \delta$) [3]. Again it is simpler to derive those algorithms directly from Bidiag(A, b).
References

