1. Consider the LO problem

\[
\begin{align*}
\min & \quad c^T x \\
\text{s.t.} & \quad Ax = b, \\
& \quad x \geq \ell,
\end{align*}
\]

where \(A \) is \(m \times n \) \((m < n)\). The primal simplex method is an active-set method that moves from vertex to vertex within the feasible region. A vertex is defined by a set of \(n \) independent equations drawn from the constraints (1) and (2). In terms of the usual basis partition

\[AP = \begin{pmatrix} B & N \end{pmatrix}, \quad x = P \begin{pmatrix} x_B \\ x_N \end{pmatrix} \]

(where \(P \) is a column permutation), write a single matrix equation that defines the current basic and nonbasic variables \(x_B, x_N \) as a vertex. You may assume that \(\ell \) is finite and the nonbasic variables are currently on their lower bounds. The matrix equation should involve \(B \) and \(N \) and a few other items.

2. Suppose \(P = I \) and the above basic solution is optimal, with dual variables \((y, z)\) satisfying \(B^T y = c_B \) and \(z = c - A^T y \). Also suppose the last nonbasic variable has bound \(\ell_n = 1 \) and reduced gradient \(z_n = c_n - a_n^T y = 1.0 \). Now suppose \(\ell_n \) is changed from 1 to \(-1\). Is the previous solution still optimal? (Yes/No/Maybe. Why? What does \(z_n \) tell us?)

3. Primal simplex proceeds by moving a nonbasic variable away from its current value while remaining feasible. For the previous example, show how primal simplex can be restarted at the previous optimal solution (with \(x_n = 1 \)). What will (or might) happen during the first iteration?

4. If the simplex implementation thought that nonbasic variables had to be on a bound, it would set \(x_n = -1 \) before restarting. What does the first basic solution \(x_B \) then look like? (Which linear system defines \(x_B \)? Is the solution sure to be feasible? Why was it a good idea to start with \(x_n = 1 \)?)

5. Suppose the vector \(x \) satisfies \(\ell \leq x \leq u \) and \(p \) is a search direction. Write an efficient (vectorized) MATLAB function to solve the 1D optimization problem

\[
\begin{align*}
\max & \quad \alpha \\
\text{s.t.} & \quad \ell \leq x + \alpha p \leq u,
\end{align*}
\]

returning \(\alpha \) and the index \(r \) that keeps \(\alpha < \infty \) (else \(r = 0 \)). Allow for some elements of \(\ell \) and \(u \) being infinite, and some elements of \(p \) being zero. Avoid creating \texttt{inf}s and \texttt{nan}s.