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The Homogeneous Method | I

The 2™ order Taylor expansion can be homogenized by adding an auxiliary dimension, e.g.,

Lecture Note #16

m*(x") = f(x*) + V(x5 (d") + 3(d*)" H*(d")
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where g’“ = Vf(xk), dF = U/t. More generally, we can define a homogeneous model to approximate
m”(-) using 6"
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2"9 order descent directions can be constructed from wk

W (v,4;0) = %

Consider Homogeneous Second-Order Descent Method (HSODM):
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e minimizing 7" over the unit ball,
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s.t. |[v; t]]| < 1.

FF = [H", g~ (g")T, %] is the aggregated matrix.

PHL — xF — ()R /t* with a proper stepsize (17*) (Line-search, backtracking, etc.).

® let X
Theorem 1 If F'* js indefinite, (3) is equivalent to the eigenvalue problem

(0% t*]|| = 1. Then the problem

reduce to solving \in (£7%). For example, we can set 6% < 0, then F'* must be indefinite.

When ['¥ is indefinite, [v"; t*] is on the sphere of unit ball, that is, |
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Comparing to the Newton Equation I

When H” is large, we usually use Krylov subspace method to solve the Newton equation,

H*d" = —g". (4)
It H" is positive definite, the Conjugate Gradient Method is linearly convergent with dependence on the
condition number K7 := Amax/Amin-

While (3) can be solved by a different Krylov method: Lanczos method, which depends on a different

gap-dependent condition number defined by the minimum and second minimum eigenvalues:

)\max

)\2 — >\min

when H” is degenerate (\,in = 0), (3) can be more robust A5 is separated from A,,.
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The Lanczos Method for Symmetric Eigenvalue Problems I

Different from the conjugate gradient method, the Lanczos method uses the Krylov subspace
{g", H"g", ...} to build the tridiagonalization:

ol Bl
ok — (qk)THqu g1 42
rk — (Hk _akl) gk — BF=lgk—1 o Tk —
qu — Tk/ﬁkaﬁk = HTkHQ : g1
ge=1 ok

Then use T to approximate eigenvalues. Generally, the Lanczos method does not require H" 1o be

positive definite. In theory, the convergence depends on the gap: )\;‘_% image Ain = 0, we still

have a finite “condition number”.
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The Toy Example I

We consider n-dimensional Hilbert matrix:

1
<n,j<n. (6)

Hij = ———,1 < <
1+ 9 —1

Compare the homogeneous model (3) and Newton equation (4) with a perturbation )\ using different \.

~

H=H+ M\ (7)

Larger \ produces better condition number: s 5 = (Apax + A)/(Amin + A)

Let us compare the Krylov subspace methods.
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Figure 1: Calculating a Newton-type direction for a perturbed Hilbert matrix

The Lanczos method (GHM-Lanczos) (3) is almost “immune” to large condition numbers. It is also
scale-invariant: perturbation does not affect its performance.
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Theoretical Guarantee of Solving a Subproblem I

Theorem 2 (Kuczyski 92, Golub 13) The complexity of finding an e-approximate smallest eigenvalue of a
symmetric matrix A is (with a high probability)

e O(n®- \//\;‘_mﬁ log(1/€)).

e orO(n? - y/2==xlog(1/e))

The gap-dependent interpretation (the first one) is particularly meaningful when the matrix is
ill-conditioned.

We can see solving the homogeneous model is sometimes easier than solving a Newton equation. We

can use this property to construct a SOM based on the homogeneous function wk.
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Preliminary Analysis I

For illustration, consider a vanilla HSODM. We set ok = —\ﬁ in the homogeneous model (3), consider
the eigenvalue problem:

[w":t"] = arg min [v;t]" [v; t]. (8)

et <1 (eMT  —./e
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A Vanilla HSODM: Overview '

The first-order condition for (8):

D S L,
(o A L N | (10)
' ok 4] =1
and the second-order condition
F* 4 0F] = Hk(+kf§'l ;: MEL (11)
o _
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Note that the above equations are conditions for global optimal solutions.

e Since it is a ball-constrained QP, we know the global optimal solution satisfy (10) and (11) except that
one have the complementarity: 6% - (||[v": ¢*]|| — 1) = 0.

This means we must justify [vk; tk] is not an “interior” point.

e Since the second diagonal term 6% = —./e < 0, then I}, must be indefinite, and 6% > 0. This
implies ||[v";#*]|| — 1) = 0 holds.

e In this case, the homogeneous model can be solved as an eigenvalue problem:

Amin(F®) := min [v;t]" (12)

I fwst] =1 (g)T —\/e

11
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Preliminary Analysis I

We now embark on the convergence analysis of a preliminary HSODM for functions with /] -Lipschitz
second derivatives. Recall f(x) is has M -Lipschitz Hessian if

V(") = VA < M= — x| (13)

Similar to the spherical constrained “trust-region” method, we have to show the homogeneous model
produces sufficient decrease at each x".

Theorem 3 Suppose that f(x) is second-order Lipschitz continuous. If (n*) < 1, we have

A? M
FOET) = f(xN) < =0+ =AY (14
Basically, it is possible when the step ||d” || = ||v” /t¥|| is sufficiently “big™. If not, we may conclude it is

almost a second-order stationary point.

12
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Proof: (n%) < 1implies ||d"|| = ||v* /t*|| is sufficiently “big”, in this case t* = 0 can happen. If t* £ 0,
FOET) = f(7) = F(x" + (n")dY) = F(x")

k ENT 1k (Uk>2 T 7k ak . M k3 qk3
< (") (g")7d" + o (@) HY A 4+ ()|
M where the
1d*|* + g(nk)?’\!dkﬂi”

th
- 2
A? M
< —7\£ + EAS’
dual solution 0% > —§% = /e (We know F'* + 0% = 0).

13
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Othewise if t* = 0,
PO = FF) = Fc 4 (1)) — )
(n*)?
< (") (g")'d" + ==
= AL (9T + o T HR 4 M AT

M
(@)THN ) |

M
= —0" - - Il* 1+ AT

2
g—%ﬁ+ A3 O

In trust-region type methods, t* = 0 is referred to as so-called “hard case”. This happens only when gk is

M
6

perpendicular to the eigenspace Syin (") of the smallest eigenvalue.

14
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When the step ||d"|| = [|[v* /t"|| (t* is large), intuitively the second diagonal “dominates” F'*, and should

be almost positive semidefinite.

Lemma 1 (Zhang et al. 2022) If ||d;.|| < A < \/2/2, then we have

x|l < 2(L +6)A. (15)

If so, we choose the full-step 77, = 1 and xFHtl = x* 4+ d¥. We conclude it is a second-order stationary
point (SOSP).

Theorem 4 (Zhang et al. 2022) If g, # 0, and ||dy || < A, then let ), = 1, we have

M
lgrst| < 2(L + 6)A° + 7A2 + A, (16)
Hy1 = — (2(L+0)A* + MA+6) 1 (17)

We leave these results since they are quite technical; refer to Zhang et al. 2022 if interested.

15
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Preliminary Analysis I

In summary, we can use a similar strategy in the spherical constrained “trust-region” method. For example,
we can set A = 2./¢/M,

o if nk is small (the produced step d” is large), the decrease is guaranteed in 9(61'5); otherwise

n* < 1, we conclude the gradient is small.

e This produces an overall iteration complexity,

O((f° = fnt)e™ ") (18)
to an e-approximate SOSP: ||g" ™| < O(e), A (H* 1) > —Q(\/e).

In the vanilla HSODM, we use a predefined /A and the a priori knowledge of /. A practical version can
utilize line-search methods to adaptively find stepsize nk.

16
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More Choices in a Homogeneous Framework I

The “homogenization” technique can be adjusted for more problems. See the following generalized

homogeneous model (GHM):

Hk k
FF = ¢ (19)

(p%)"  oF
where ¢¥ € R is a vector. We set 6" adaptively, and g” is not an only option for ¢". For example, use
¢" — g”|| < e. Recall a Path-Following Method 1z — 0,

the “inexact gradient”,
x(p) = argmin f(x) + pl|z|? (20)

then x (1) — x* (homotopy). Assume f is [3-concordant Lipschitz:
IVf(z+d) = V() =V f(z)d| < B-d'V*f(a)d, (21)

We can use GHMs as subproblems.

17
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A Homotopy HSODM I

At some 11 > 0, use the GHM as follows:

l Tk ko Xk_
[0":tk] = arg min [v;t]? S v; t]. (22)
I[vst]ll <1 (gF + px)T —u

Just like an interior-point method, solve a sequence of problems by 11 — 0.
e [inner loop] At each 1, solve the GHM repetitively (22)m and set xFtl = xk — 77’“?}’“/75’~C
e [outer loop] Once ||V f(xr) + p - xk|| < O(w), decrease pir =0 - 11,0 < o < 1

If we always start at x" after decreasing (4, the [inner loop] has quadratic rate of convergence; the [outer

loop] decreases linearly. We have an O (log(1/¢) algorithm without strong convexity!

18
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Numerical lllustration for Homotopy HSODM I

Logistic regression with Lo penalty Consider the following logistic regression function with Lo penalty,
flz) = - §milog (1 + 6‘1’““?"”) + 2 (23)
m 2 ’
1=

We can show function f(x) is 5-concordant Lipschitz. Now we compare SOMs based on Newton
equations / Eigenvalue directions, using Krylov subspace methods.

We choose inexact regularized Newton method (1 Newt on) solved by conjugate gradient method:
(H* + o"(|g"|'/? - 1)a* = —g" (24)

(for more details on using “regularization” based on gradient norm; see Mishchenko, SIOPT, 2023).

19



MS&E314: Optimization in ML&DS Lecture Note #16

Logistic Regression name := news20, n :=1355191, N :=19996
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e Adapti1ive—HSODM: adaptive choice for ok
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e Homotopy—HSODM uses 1/3 gradient evaluations/Krylov iterations of a Newton-based SOM.

21
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