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The Homogeneous Method I

The 2nd order Taylor expansion can be homogenized by adding an auxiliary dimension, e.g.,

mk(xk) = f(xk) +∇f(xk)T (dk) + 1
2 (d

k)THk(dk)

= 1
2t2

v
t

T  Hk gk

(gk)T 0

v
t

 (1)

where gk = ∇f(xk), dk = v/t. More generally, we can define a homogeneous model to approximate

mk(·) using δk:

ψk (v, t; δ) :=
1

2

v
t

T  Hk gk

(gk)T δk

v
t

 (2)

2nd order descent directions can be constructed from ψk

Consider Homogeneous Second-Order Descent Method (HSODM):
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• minimizing ψk over the unit ball,

[vk; tk] = argmin 1
2

v
t

T  Hk gk

(gk)T δk

v
t


s.t. ∥[v; t]∥ ≤ 1.

(3)

F k = [Hk, gk; (gk)T , δk] is the aggregated matrix.

• let xk+1 = xk − (ηk)vk/tk with a proper stepsize (ηk) (Line-search, backtracking, etc.).

Theorem 1 If F k is indefinite, (3) is equivalent to the eigenvalue problem

When F k is indefinite, [vk; tk] is on the sphere of unit ball, that is, ∥[vk; tk]∥ = 1. Then the problem

reduce to solving λmin(F
k). For example, we can set δk < 0, then F k must be indefinite.
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Comparing to the Newton Equation

When Hk is large, we usually use Krylov subspace method to solve the Newton equation,

Hkdk = −gk. (4)

If Hk is positive definite, the Conjugate Gradient Method is linearly convergent with dependence on the

condition number κH := λmax/λmin.

While (3) can be solved by a different Krylov method: Lanczos method, which depends on a different

gap-dependent condition number defined by the minimum and second minimum eigenvalues:

λmax

λ2 − λmin
(5)

when Hk is degenerate (λmin = 0), (3) can be more robust λ2 is separated from λmin.
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The Lanczos Method for Symmetric Eigenvalue Problems

Different from the conjugate gradient method, the Lanczos method uses the Krylov subspace

{g0,Hkg0, ...} to build the tridiagonalization:

αk = (qk)THkqk

rk =
(
Hk − αkI

)
qk − βk−1qk−1

qk+1 = rk/βk, βk =
∥∥rk∥∥

2

⇒ T k =



α1 β1 · · ·

β1 α2 . . .
...

. . .
. . .

. . .

...
. . .

. . . βk−1

· · · βk−1 αk


Then use T k to approximate eigenvalues. Generally, the Lanczos method does not require Hk to be

positive definite. In theory, the convergence depends on the gap: λmax

λ2−λmin
; image λmin = 0, we still

have a finite “condition number”.
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The Toy Example

We consider n-dimensional Hilbert matrix:

Hij =
1

i+ j − 1
, i ≤ n, j ≤ n. (6)

Compare the homogeneous model (3) and Newton equation (4) with a perturbation λ using different λ.

H̃ = H + λI (7)

Larger λ produces better condition number: κH̃ = (λmax + λ)/(λmin + λ)

Let us compare the Krylov subspace methods.
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Figure 1: Calculating a Newton-type direction for a perturbed Hilbert matrix

The Lanczos method (GHM-Lanczos) (3) is almost “immune” to large condition numbers. It is also

scale-invariant: perturbation does not affect its performance.
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Theoretical Guarantee of Solving a Subproblem

Theorem 2 (Kuczyski 92, Golub 13) The complexity of finding an ϵ-approximate smallest eigenvalue of a

symmetric matrix A is (with a high probability)

• O(n2 ·
√

λmax

λ2−λmin
log(1/ϵ)).

• or O(n2 ·
√

λmax

ϵ log(1/ϵ))

The gap-dependent interpretation (the first one) is particularly meaningful when the matrix is

ill-conditioned.

We can see solving the homogeneous model is sometimes easier than solving a Newton equation. We

can use this property to construct a SOM based on the homogeneous function ψk.
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Preliminary Analysis

For illustration, consider a vanilla HSODM. We set δk ≡ −
√
ϵ in the homogeneous model (3), consider

the eigenvalue problem:

[vk; tk] = arg min
∥[v;t]∥≤1

[v; t]T

 Hk gk

(gk)T −
√
ϵ

 [v; t]. (8)

Take dk = vk/tk (if tk = 0 then simply dk = −vk). Restrict the step to some ∥(ηk)dk∥ = ∆k:

xk+1 = xk − (ηk)dk. (9)
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A Vanilla HSODM: Overview

The first-order condition for (8):Hk + θk · I gk

(gk)T −δk + θk

vk
tk

 = 0,

∥[vk; tk]∥ = 1.

(10)

and the second-order condition

F k + θkI =

Hk + θk · I gk

(gk)T −δk + θk

 ≽ 0 (11)
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Note that the above equations are conditions for global optimal solutions.

• Since it is a ball-constrained QP, we know the global optimal solution satisfy (10) and (11) except that

one have the complementarity: θk · (∥[vk; tk]∥ − 1) = 0.

This means we must justify [vk; tk] is not an “interior” point.

• Since the second diagonal term δk = −
√
ϵ < 0, then Fk must be indefinite, and θk > 0. This

implies ∥[vk; tk]∥ − 1) = 0 holds.

• In this case, the homogeneous model can be solved as an eigenvalue problem:

λmin(F
k) := min

∥[v;t]∥=1
[v; t]T

 Hk gk

(gk)T −
√
ϵ

 (12)
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Preliminary Analysis

We now embark on the convergence analysis of a preliminary HSODM for functions with M -Lipschitz

second derivatives. Recall f(x) is has M -Lipschitz Hessian if

∥∇2f(xk+1)−∇2f(xk)∥ ≤M∥xk+1 − xk∥ (13)

Similar to the spherical constrained “trust-region” method, we have to show the homogeneous model

produces sufficient decrease at each xk.

Theorem 3 Suppose that f(x) is second-order Lipschitz continuous. If (ηk) ≤ 1, we have

f(xk+1)− f(xk) ≤ −∆2

2
δ +

M

6
∆3. (14)

Basically, it is possible when the step ∥dk∥ = ∥vk/tk∥ is sufficiently “big”. If not, we may conclude it is

almost a second-order stationary point.
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Proof: (ηk) ≤ 1 implies ∥dk∥ = ∥vk/tk∥ is sufficiently “big”, in this case tk = 0 can happen. If tk ̸= 0,

then

f(xk+1)− f(xk) = f(xk + (ηk)dk)− f(xk)

≤ (ηk) · (gk)Tdk +
(ηk)2

2
· (dk)THkdk +

M

6
(ηk)3∥dk∥3

≤ −θk · (η
k)2

2
∥dk∥2 + M

6
(ηk)3∥dk∥3

≤ −∆2

2

√
ϵ+

M

6
∆3,

where the

dual solution θk ≥ −δk ≡
√
ϵ (We know F k + θkI ≽ 0).
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Othewise if tk = 0,
f(xk+1)− f(xk) = f(xk + (ηk)dk)− f(xk)

≤ (ηk) · (gk)Tdk +
(ηk)2

2
· (dk)THkdk +

M

6
(ηk)3∥dk∥3

= ∆ · (gk)T vk +
∆2

2
· (vk)THkvk +

M

6
∆3∥vk∥3

= −θk · ∆
2

2
∥vk∥2 + M

6
∆3∥vk∥3

≤ −∆2

2

√
ϵ+

M

6
∆3

In trust-region type methods, tk = 0 is referred to as so-called “hard case”. This happens only when gk is

perpendicular to the eigenspace Smin(H
k) of the smallest eigenvalue.
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When the step ∥dk∥ = ∥vk/tk∥ (tk is large), intuitively the second diagonal “dominates” F k, and should

be almost positive semidefinite.

Lemma 1 (Zhang et al. 2022) If ∥dk∥ ≤ ∆ ≤
√
2/2, then we have

∥gk∥ ≤ 2(L+ δ)∆. (15)

If so, we choose the full-step ηk = 1 and xk+1 = xk + dk. We conclude it is a second-order stationary

point (SOSP).

Theorem 4 (Zhang et al. 2022) If gk ̸= 0, and ∥dk∥ ≤ ∆, then let ηk = 1, we have

∥gk+1∥ ≤ 2(L+ δ)∆3 +
M

2
∆2 + δ∆, (16)

Hk+1 ≽ −
(
2(L+ δ)∆2 +M∆+ δ

)
I (17)

We leave these results since they are quite technical; refer to Zhang et al. 2022 if interested.
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Preliminary Analysis

In summary, we can use a similar strategy in the spherical constrained “trust-region” method. For example,

we can set ∆ = 2
√
ϵ/M ,

• if ηk is small (the produced step dk is large), the decrease is guaranteed in Ω(ϵ1.5); otherwise

ηk ≤ 1, we conclude the gradient is small.

• This produces an overall iteration complexity,

O((f0 − finf)ϵ
−1.5) (18)

to an ϵ-approximate SOSP: ∥gk+1∥ ≤ O(ϵ), λmin(H
k+1) ≥ −Ω(

√
ϵ).

In the vanilla HSODM, we use a predefined ∆ and the a priori knowledge of M . A practical version can

utilize line-search methods to adaptively find stepsize ηk.
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More Choices in a Homogeneous Framework

The “homogenization” technique can be adjusted for more problems. See the following generalized

homogeneous model (GHM):

F k :=

 Hk ϕk

(ϕk)T δk

 (19)

where ϕk ∈ Rn is a vector. We set δk adaptively, and gk is not an only option for ϕk. For example, use

the “inexact gradient”, ∥ϕk − gk∥ ≤ ϵ. Recall a Path-Following Method µ→ 0,

x(µ) = argmin f(x) + µ∥x∥2 (20)

then x(µ) → x∗ (homotopy). Assume f is β-concordant Lipschitz:

∥∇f(x+ d)−∇f(x)−∇2f(x)d∥ ≤ β · dT∇2f(x)d, (21)

We can use GHMs as subproblems.
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A Homotopy HSODM

At some µ > 0, use the GHM as follows:

[vk; tk] = arg min
∥[v;t]∥≤1

[v; t]T

 Hk gk + µxk

(gk + µxk)T −µ

 [v; t]. (22)

Just like an interior-point method, solve a sequence of problems by µ→ 0.

• [inner loop] At each µ, solve the GHM repetitively (22)m and set xk+1 = xk − ηkvk/tk

• [outer loop] Once ∥∇f(xk) + µ · xk∥ ≤ O(µ), decrease µ+ = σ · µ, 0 < σ < 1

If we always start at xk after decreasing µ, the [inner loop] has quadratic rate of convergence; the [outer

loop] decreases linearly. We have an O(log(1/ϵ) algorithm without strong convexity!
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Numerical Illustration for Homotopy HSODM

Logistic regression with L2 penalty Consider the following logistic regression function with L2 penalty,

f(x) =
1

m

m∑
i=1

log
(
1 + e−bi·aT

i x
)
+
γ

2
∥x∥2, (23)

We can show function f(x) is β-concordant Lipschitz. Now we compare SOMs based on Newton

equations / Eigenvalue directions, using Krylov subspace methods.

We choose inexact regularized Newton method (iNewton) solved by conjugate gradient method:

(Hk + σk∥gk∥1/2 · I)dk = −gk (24)

(for more details on using “regularization” based on gradient norm; see Mishchenko, SIOPT, 2023).
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• Adaptive-HSODM: adaptive choice for δk
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• Homotopy-HSODM uses 1/3 gradient evaluations/Krylov iterations of a Newton-based SOM.
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