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L&S
s \« Primal-Dual Potential Function for LP' < o~ Il

I-dual potential function is defined by/ Cl"’)Q/‘Q* \oy G>\>

////-

Y+ p(X,S) ::?(n + p) 'Iog(x S) Z log(x;s;), forsomep > 0.

_o0 Vntp(X, S) _@@n X,S)|> plog(x s) + nlogn,

then, for p > 0, 1,1 ,(x,s) — —oc implies that x’ s — (. More precisely, we have

Untp(X,8) —nlogn) v. 25
p

Given a pair (x*,y".s") € int F, compute direction vectors (d.,, d,, d,) from the Newton iteration:
Y Yy

\/-
n

L,r

For (x,y,s) € int F, the |

x!'s < exp(

k k _ DTS bk
S*d, + X"*d, = s — X"s
Ad, = 0, (1)
Ald, +d, = 0.

How to solve the equation system efficiently using the block structures?
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Block Structure in the KKT System I

Skd, + Xkd, = r¥,
Ad, = O,
Ald, +d;, = o.

Scale the first block to: d,. + (S¥) "1 X*d, = (S%)~1r*.
Multiplying A to both sides and using the second block equations: A(S*) 1 X*d, = A(S*)"1rF.
Applying the third block equations: —A(S*) =1 X*ATd, = A(S*)~1r".

This is an 1 X m positive definite system, and solve it for d,;; then d ; from the third block; then d, from
the first block.

Positive Definite System Equation Solver: ()d = r where () is a PD matrix.
Matrix Factorization:
e Cholesky: R' R = (), where R is a Right-Triangle matrix

o LDILT = (2, where L is a Left-Triangle matrix.
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Description of Algorithm for LP I

Given (x",y",s") € int . Setp > /nand k := 0.
While (x*)T's* > e do
1. Set (x,s) = (x",s") and compute (d,d,, ds) from (4).
2. Letx" Tt = xF + afd,, y" ™ = y* + a”d,, and s" T = s* + a"d, where

af = arg m>1%1 wnﬂ)(xk + ad,, s® + ady).

3. Let k := k + 1 and return to Step 1.
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Theorem 1 Letp > \/ﬁ Then, the potential reduction algorithm generates the (interior) feasible solution
sequence {x", y*, s*} such that

¢n+p(xk+1a Sk—H) - wn—l—f?(xkv Sk) @

Thus, if thy, 1 ,(x",8") < plog((x")?'s") + nlogn, the algorithm terminates in at most
O(plog((x°)T'sY /e)) iterations with (x*)T's* = cTx* — bly* <e.

The proof used a key fact: d. d, = —d’ A'd,, = 0 for the directions. Also

(Xk)TSk Vg p (X" sk) n log n)

Pt p(x° SO) nlogn plog((xO)TSO/e))

’U

xp(
xp(
p(plog(x %) — plog((XO)TSO/€)>
(

log(€)) =

The role of p? And more aggressive step size?

exp

(LPpdpath...m and LPpdpotential.m of Chapter 5)
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Proof Sketch of the Reduction Theorem '

We first have the following lemma:

a\/min(XSe)
[(XS) =1/ 2r|

Lemma 1 Let the direction vectord = (d,, d,, ds) be computed by (4), and let ) =

where v is a positive constant less than 1. Let
xt=x+0d,, y"=y+6d,, and s* =s+0d,.

Then, we have (x ™,y ™, s*) € int F and

¢n+p(x+v S+) o ¢n+p(X, S)

< —a/min(X Se)[(XS) "2 (e — L Xs)| + 5
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h(xT,sT) —h(x,s)

= (n+p)log (14 2xpides) 5 (1og< >+1og< =)
< (n+p) (2HLe) -5 (log >+1og< )

< (ntp) (PEe) — 0eT (SN + X 1dx)+ los 1dsl2l(1+_lf)x‘1dx||2
< mH6(dTx +dTs) — 6eT(S71d, + X1d,) + g

2({1—04)

0 (Zr2e’ (Xdy + Sd,) — el (S7'ds + X~1d,)) +

(Z—;p T (Xd, + Sd, )—e (XS)~ (de+Sdm))+2(1a——2a)

_ (?;;QXSe—e) (X9)7H(Xd, + 5da) + 5, A=l

B n+p o —1 xTS 04—2

= 0 (XTS XSe e) (XS) ( —|-20 XSG) + 2(1—-a) di < Q

= 0 (XS) M2 4 i T

— —a\/mln (X Se) - HZJTFP(XS> Y/ 21'” + 2(1 a) N - )

V———— $3 | < -§oxl
> I3 T Vg T
> 3> “ A +
2

<=0
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Let v. = X Se. Then, we can prove the following technical lemma:

Lemma 2 Letv € R" be a positive vector and p > +/n. Then,

Combining these Lemmas 2 and 3 we have

¢n+p(x+v S+) — Untp (x,8)

< —av/3/4+ 2(1a— S

for a constant 0.
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P sy LM

Ko
ST ~ VA
Mo-vedyd > Y? Initialization NS e S
VO_&’V\ l o \ff’:.b
S - S
*20
e Combining the primal and dual into a single linear feasibility problem, then applying LP algorithms to

find a feasible point of the problem. Theoretically, this approach can retain the currently best

complexity result.

e The big M/ method, i.e., add one or more artificial column(s) and/or row(s) and a huge penalty
parameter V] to force solutions to become feasible during the algorithm.

e Phase |-then-Phase Il method, i.e., first try to find a feasible point (and possibly one for the dual
problem), and then start to look for an optimal solution if the problem is feasible and bounded.

e Combined Phase |-Phase Il method, i.e., approach feasibility and optimality simultaneously. To our
knowledge, the “best” complexity of this approach is O (n log((x")?'s" /e)).
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Homogeneous and Self-Dual Algorithm I

e |t solves the linear programming problem without any regularity assumption concerning the existence
of optimal, feasible, or interior feasible solutions, while it retains the currently best complexity result

e |t can start at any positive primal-dual pair, feasible or infeasible, near the central ray of the positive

orthant (cone), and it does not use any big V] penalty parameter or lower bound.

e Each iteration solves a system of linear equations whose dimension is almost the same as that solved

in the standard (primal-dual) interior-point algorithms.

e |f the LP problem has a solution, the algorithm generates a sequence that approaches feasibility and
optimality simultaneously; if the problem is infeasible or unbounded, the algorithm will produce an

infeasibility certificate for at least one of the primal and dual problems.
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Primal-Dual Alternative Systems I

Recall that a pair of LP has two alternatives

(Solvable) Ax —b =0 (Infeasible) Ax =0
~Aly+c >0, —ATy >0,

bly —cix =0, . bly —cix >0,

y free, x >0 y free, x >0

J—
(HP) Ax — bt

|
o

~Aly+er =s A+S ZO
bly —c'x =k £+ 20
y free, (x;7) >0

where the two alternatives are:

(Solvable) : (7 > 0,k =0) or (Infeasible): (7 =0,k > 0)

11
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Let’s Find a Feasible Solution of (HP) I

Givenx' =e > 0,s" = e > 0, and y" = 0, we formulate a self-dual LP problem:
(HS — DP) min (n+1)0
s.t. Ax  —br +bf =0,
—Aly +cT —cf >0,
by —c'x +z0 >0,
~bTy +efx  —zr = —(n+1),
yfree, x>0, 72>0, 0 free.

Note that (y = 0, x = e, 7 = 1, 0 = 1) is a strictly feasible point for (HSDP). Moreover, one can

show that the constraints imply
T T _
er+e s+7+r—(n+1)0=(n+1),
which serves as a normalizing constraint for (HSDP) to prevent the all-zero solution.

12
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Main Result '

Theorem 2 The interior-point algorithm solves (HS-DP) in O(+/n log ™) steps and each step solves a
system of linear equations as the same size as in feasible algorithms, and it always produces an optimal
solution (y™*,x*, 7%, 8" k™, 0" = 0) where 7* + k* > 0. If 7 > 0 then it produces an optimal
solution pair for the original LP problem; if x* > (0, then it produces a certificate to prove (at least) one of
the pair is infeasible.

T —

T~
(=do

- AT c- X / -
G;Qci 6, R o A= e .e. - X=b

_ s 0
Xu"l Ebo {\1)
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N~ C,'\( Gt ";‘-LS
\»L:b ~ :
~ | FTeZ A ~Ct8=0
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2

Extensions to Solving SDPE Potential Function I

Forany X € int F, and (y,S) € int Fg, let parameter p > 0 and

Dt ol(X,8) = (0 + p) log(X o ) — log(det(X) - det(S)),

——

Unip(X, 8) = plog(X e .8) + 1, (X,5) > plog(X e 5) +nlogn.
Then, 1,4+ ,( X, S) — —oc implies that X e .S — (. More precisely, we have

X,S) —nlogn
p

XeS< exp(¢n+p( ).
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Primal-Dual SDP Alternative Systems I

A pair of SDP has two alternatives under mild conditions

G@ AX —b =0 (Infeasible) AX =0
ATy +C =0, N ~Aly >o,

bly —CeX =0, bly —CeX >0,

y free, X >0 y free, X >0
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An Integrated Homogeneous System I

The two alternative systems can be homogenized as one:

(HSDP) AX —br =0
ATy +Cr =s>0,
bly —CeX =kx>0,
y free, X =0, 72>0,

where the three alternatives are

(Solvable) : (7 >

(Infeasible) : (1t =

[ (Allothers) : (7 =k = 0).
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Primal-Dual Interior-Point Algorithms for More General Convex Optimization | I

We now present an algorithm for solving more general convex optimization problems:

min@ st. x>0

where, with the notation X = diag(x), we look for a constrained root of

( Xg(x)=0,x>0, g(x) >0, where g(x)=Vf(x).
—_— -

Vector function g(x) would be a monotone mapping and the solution is also called the monotone

e

complemtarity point.

We assume that / meets a Scaled Lipschitz condition: for any point x > 0
-

1X (g(x+d) —g(x) — Vg(x)d) || < B.d? Vg(x)d, whenever || X 'd|| < a(< 1). (2

—

17
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Examples of Scaled Lipschitz Functions I

e f(z)=—log(z), g(x) = =' and ¢/(x) = —5: Not Lipschitz but Scaled Lipschitz

1 -1 d 1 [ —d az 1 1
T+ d T 2 x<z<az)>x31a:>6Q 1 — «

p=2

[
=
=

I

xlog(z), g(x) = 1 + log(z) and ¢'(x) = =: Not Lipschitz but Scaled Lipschitz.

o f(z)=e" g(xr)=e"ande”: Both Lipschitz and Scaled Lipschitz at Bounded x.

18
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Interior-Point Algorithms for More General Convex Optimization Il I

We start from a solution x* > 0 and g(xk) > (0 and they approximately satisfy the equations
Xs=p"e, s=g(x), forsome p* > 0. (3)

Such a solution exists because it is the (unique) optimal solution for the problem with logarithmic barrier
- k
min f(x) — p Zlog(aﬁj).
J

We replace 11~ by /Tt = (1 — %),u"C and aim to find a solution x > 0 such that g(x) > 0

Xs = pftle, s=gx).

Starting from (x*, s*), we apply the Newton iteration using the auxiliary variables s = g(x)

(s¥ = g(x*)):

Xkd, + Std, = (1 - L)uFe— XFks*,
v 4)
d; = Vg(x")d,.

19
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Now we analyze the quality of the new iterate x ™ = x” + d, together with s = g(x™).
Multiplying (X]““S’“)_l/2 to both sides of the first equation of (4), we have

Dld, + Dd, = (X*S*F)71/2((1 — —L ke — xFsh),

NG
where D = (X*)1/2(S¥)=1/2 Note thatd”'d, = d’ Vg(x*)d, > 0

ID7 de|* +[|Dds | < [|D71de + Dds]|2
= [(X*SF)~12((1 - E)ube — XFs")|?
— 2k,
From now on, we set 0 < 77 < 1/2. Thus,
[(XF) 7, || = [[(XFS*) 2D .|| < [(X*S™) V2D |l < < 1/2.
Consequently, 1/2 < x;r/x? < 3/2 for all j. Moreover,

|Dods|| = [|D7' Do Dds|| = [D7du ||| Dds|| < (|D7 da||* + |1 Dds|[?) /2 < 571" /2,

20



MS&E314: Optimization in ML&DS Lecture Note #15

and
d!vg(x")d, =dld, =d D 'Dd, < |D~'d,||Dd,|| < n*u"/2.

x

Consider
Xtst —(1—q)ute
= XT(s" +d, +g(xt) - g(x") = Vg(x*)d,) — (1 —7)pPe
= (X* 4 Dy)(s" +ds) — (1 —y)pPe+ Xt (g(xt) — g(x*) — Vg(x*)d,)
= D,d, +XT(gxT) — gxF) — Vg(x¥)d,).

21
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Lecture Note #15

From g being scaled Lipschitz with 3, /2 and the above inequalities we obtain

HXJFS+ _

(1-

n
RN

VAN VAN VAN VAR | I

D,d, + X (g(x") — g(x*) — Vg(x*)d,)

Dpd, + (X*) 7' X T X5 (g(xt) — g(x*) — Vg(x*)d,)|
Dpdl + [(XF) X T[] X (g(xT) — g(x*) — Vg(x¥)d,)||
D.d,|| + (3/2)[ X*(g(xt) — g(x*) — Vg(x")d. )|

D.d,|| + (3/2)512d% Vg (x¥)d,

(1/2+ (3/4)B1j2)n* 1",

comparing with the initial error is || X *s® — (1 — %),ukeH = nu®.

There is also a Homogeneous and Self-Dual Algorithm for solving the monotone complementarity

problem, which is a basic solver of MOSEK. The algorithm produces a certificate if no complementarity

solution exists.

(HOmcp.m, mcpfun.m and mcpJacobian.m of Chapter 15)

Eﬁé’()l ’v{—cx
H ()= T
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Software Implementation I
Cplex-Barrier BM, GUROBI, COPT Y& Gll-Voued\

SEDUMI: http://sedumi.mcmaster.ca/ <OP

MOSEK: http://www.mosek.com/products_mosek.html u\(—\/Ou,m

SDDPT3: http://www.math.nus.edu.sg/  mattohkc/sdpt3.html <D

—_—

DSDPf_(DuaI Semidefinite Programming Algorithm): W bsDD
http://www.stanford.edu/ yyye/Col.html

T

E)VX/ECOS: http://www.stanford.edu/ ~]ooyol/cv@

\,

hsdLPsolver and more: http://www.stanford.edu/ " yyye/matlab.html
~_
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