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Primal-Dual Potential Function for LP

For (x,y, s) ∈ intF , the joint primal-dual potential function is defined by

ψn+ρ(x, s) := (n+ ρ) log(xT s)−
n∑
j=1

log(xjsj), for some ρ > 0.

ψn+ρ(x, s) = ρ log(xT s) + ψn(x, s) ≥ ρ log(xT s) + n log n,

then, for ρ > 0, ψn+ρ(x, s) → −∞ implies that xT s → 0. More precisely, we have

xT s ≤ exp(
ψn+ρ(x, s)− n log n

ρ
).

Given a pair (xk,yk, sk) ∈ intF , compute direction vectors (dx,dy,ds) from the Newton iteration:

Skdx +Xkds = (xk)T sk

n+ρ e−Xksk,

Adx = 0,

ATdy + ds = 0.

(1)

How to solve the equation system efficiently using the block structures?
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Block Structure in the KKT System

Skdx +Xkds = rk,

Adx = 0,

ATdy + ds = 0.

Scale the first block to: dx + (Sk)−1Xkds = (Sk)−1rk.

Multiplying A to both sides and using the second block equations: A(Sk)−1Xkds = A(Sk)−1rk.

Applying the third block equations: −A(Sk)−1XkATdy = A(Sk)−1rk.

This is an m×m positive definite system, and solve it for dy ; then ds from the third block; then dx from

the first block.

Positive Definite System Equation Solver: Qd = r where Q is a PD matrix.

Matrix Factorization:

• Cholesky: RTR = Q, where R is a Right-Triangle matrix

• LDLT = Q, where L is a Left-Triangle matrix.
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Description of Algorithm for LP

Given (x0,y0, s0) ∈ intF . Set ρ ≥
√
n and k := 0.

While (xk)T sk ≥ ϵ do

1. Set (x, s) = (xk, sk) and compute (dx,dy,ds) from (4).

2. Let xk+1 = xk + αkdx, yk+1 = yk + αkdy , and sk+1 = sk + αkds where

αk = argmin
α≥0

ψn+ρ(x
k + αdx, s

k + αds).

3. Let k := k + 1 and return to Step 1.
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Theorem 1 Let ρ ≥
√
n. Then, the potential reduction algorithm generates the (interior) feasible solution

sequence {xk,yk, sk} such that

ψn+ρ(x
k+1, sk+1)− ψn+ρ(x

k, sk) ≤ −0.15.

Thus, if ψn+ρ(x
0, s0) ≤ ρ log((x0)T s0) + n log n, the algorithm terminates in at most

O(ρ log((x0)T s0/ϵ)) iterations with (xk)T sk = cTxk − bTyk ≤ ϵ.

The proof used a key fact: dTxds = −dTxA
Tdy = 0 for the directions. Also

(xk)T sk ≤ exp(
ψn+ρ(x

k,sk)−n logn
ρ )

≤ exp(
ψn+ρ(x

0,s0)−n logn−ρ log((x0)T s0/ϵ)
ρ )

≤ exp(ρ log(x
0,s0)−ρ log((x0)T s0/ϵ)

ρ )

= exp(log(ϵ)) = ϵ.

The role of ρ? And more aggressive step size?

(LPpdpath...m and LPpdpotential.m of Chapter 5)
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Proof Sketch of the Reduction Theorem

We first have the following lemma:

Lemma 1 Let the direction vector d = (dx,dy,ds) be computed by (4), and let θ =
α
√

min(XSe)

∥(XS)−1/2r∥
where α is a positive constant less than 1. Let

x+ = x+ θdx, y+ = y + θdy, and s+ = s+ θds.

Then, we have (x+,y+, s+) ∈ intF and

ψn+ρ(x
+, s+)− ψn+ρ(x, s)

≤ −α
√

min(XSe)∥(XS)−1/2(e− (n+ρ)
xT s

Xs)∥+ α2

2(1−α)

.
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ψ(x+, s+)− ψ(x, s)

= (n+ ρ) log
(
1 +

θdT
s x+θdT

x s
xT s

)
−
∑n
j=1

(
log(1 +

θdsj
sj

) + log(1 +
θdxj

xj
)
)

≤ (n+ ρ)
(
θdT

s x+θdT
x s

xT s

)
−
∑n
j=1

(
log(1 +

θdsj
sj

) + log(1 +
θdxj

xj
)
)

≤ (n+ ρ)
(
θdT

s x+θdT
x s

xT s

)
− θeT (S−1ds +X−1dx) +

||θS−1ds||2+||θX−1dx||2
2(1−α)

≤ n+ρ
xT s

θ(dTs x+ dTx s)− θeT (S−1ds +X−1dx) +
α2

2(1−α)

= θ
(
n+ρ
xT s

eT (Xds + Sdx)− eT (S−1ds +X−1dx)
)
+ α2

2(1−α)

= θ
(
n+ρ
xT s

eT (Xds + Sdx)− eT (XS)−1(Xds + Sdx)
)
+ α2

2(1−α)

= θ
(
n+ρ
xT s

XSe− e
)T

(XS)−1 (Xds + Sdx) +
α2

2(1−α)

= θ
(
n+ρ
xT s

XSe− e
)T

(XS)−1
(

xT s
n+ρe−XSe

)
+ α2

2(1−α)

= −θ · n+ρ
xT s

· ∥(XS)−1/2r∥2 + α2

2(1−α)

= −α
√

min(XSe) · ∥n+ρ
xT s

(XS)−1/2r∥+ α2

2(1−α) .
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Let v = XSe. Then, we can prove the following technical lemma:

Lemma 2 Let v ∈ Rn be a positive vector and ρ ≥
√
n. Then,√

min(v)∥V −1/2(e− (n+ ρ)

eTv
v)∥ ≥

√
3/4 .

Combining these Lemmas 2 and 3 we have

ψn+ρ(x
+, s+)− ψn+ρ(x, s)

≤ −α
√
3/4 +

α2

2(1− α)
= −δ

for a constant δ.
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Initialization

• Combining the primal and dual into a single linear feasibility problem, then applying LP algorithms to

find a feasible point of the problem. Theoretically, this approach can retain the currently best

complexity result.

• The big M method, i.e., add one or more artificial column(s) and/or row(s) and a huge penalty

parameter M to force solutions to become feasible during the algorithm.

• Phase I-then-Phase II method, i.e., first try to find a feasible point (and possibly one for the dual

problem), and then start to look for an optimal solution if the problem is feasible and bounded.

• Combined Phase I-Phase II method, i.e., approach feasibility and optimality simultaneously. To our

knowledge, the “best” complexity of this approach is O(n log((x0)T s0/ϵ)).
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Homogeneous and Self-Dual Algorithm

• It solves the linear programming problem without any regularity assumption concerning the existence

of optimal, feasible, or interior feasible solutions, while it retains the currently best complexity result

• It can start at any positive primal-dual pair, feasible or infeasible, near the central ray of the positive

orthant (cone), and it does not use any big M penalty parameter or lower bound.

• Each iteration solves a system of linear equations whose dimension is almost the same as that solved

in the standard (primal-dual) interior-point algorithms.

• If the LP problem has a solution, the algorithm generates a sequence that approaches feasibility and

optimality simultaneously; if the problem is infeasible or unbounded, the algorithm will produce an

infeasibility certificate for at least one of the primal and dual problems.
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Primal-Dual Alternative Systems

Recall that a pair of LP has two alternatives

(Solvable) Ax− b = 0

−ATy + c ≥ 0,

bTy − cTx = 0,

y free, x ≥ 0

or

(Infeasible) Ax = 0

−ATy ≥ 0,

bTy − cTx > 0,

y free, x ≥ 0

(HP ) Ax− bτ = 0

−ATy + cτ = s ≥ 0,

bTy − cTx = κ ≥ 0,

y free, (x; τ) ≥ 0

where the two alternatives are:

(Solvable) : (τ > 0, κ = 0) or (Infeasible) : (τ = 0, κ > 0)
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Let’s Find a Feasible Solution of (HP)

Given x0 = e > 0, s0 = e > 0, and y0 = 0, we formulate a self-dual LP problem:

(HS −DP ) min (n+ 1)θ

s.t. Ax −bτ +b̄θ = 0,

−ATy +cτ −c̄θ ≥ 0,

bTy −cTx +z̄θ ≥ 0,

−b̄Ty +c̄Tx −z̄τ = −(n+ 1),

y free, x ≥ 0, τ ≥ 0, θ free.

Note that (y = 0, x = e, τ = 1, θ = 1) is a strictly feasible point for (HSDP). Moreover, one can

show that the constraints imply

eTx+ eT s+ τ + κ− (n+ 1)θ = (n+ 1),

which serves as a normalizing constraint for (HSDP) to prevent the all-zero solution.
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Main Result

Theorem 2 The interior-point algorithm solves (HS-DP) in O(
√
n log n

ϵ ) steps and each step solves a

system of linear equations as the same size as in feasible algorithms, and it always produces an optimal

solution (y∗,x∗, τ∗, s∗, κ∗, θ∗ = 0) where τ∗ + κ∗ > 0. If τ∗ > 0 then it produces an optimal

solution pair for the original LP problem; if κ∗ > 0, then it produces a certificate to prove (at least) one of

the pair is infeasible.
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Extensions to Solving SDP: Potential Function

For any X ∈ intFp and (y, S) ∈ intFd, let parameter ρ > 0 and

ψn+ρ(X,S) := (n+ ρ) log(X • S)− log(det(X) · det(S)),

ψn+ρ(X,S) = ρ log(X • S) + ψn(X,S) ≥ ρ log(X • S) + n log n.

Then, ψn+ρ(X,S) → −∞ implies that X • S → 0. More precisely, we have

X • S ≤ exp(
ψn+ρ(X,S)− n log n

ρ
).
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Primal-Dual SDP Alternative Systems

A pair of SDP has two alternatives under mild conditions

(Solvable) AX − b = 0

−ATy + C ≽ 0,

bTy − C •X = 0,

y free, X ≽ 0

or

(Infeasible) AX = 0

−ATy ≽ 0,

bTy − C •X > 0,

y free, X ≽ 0
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An Integrated Homogeneous System

The two alternative systems can be homogenized as one:

(HSDP ) AX − bτ = 0

−ATy + Cτ = s ≥ 0,

bTy − C •X = κ ≥ 0,

y free, X ≽ 0, τ ≥ 0,

where the three alternatives are

(Solvable) : (τ > 0, κ = 0)

(Infeasible) : (τ = 0, κ > 0)

(All others) : (τ = κ = 0).
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Primal-Dual Interior-Point Algorithms for More General Convex Optimization I

We now present an algorithm for solving more general convex optimization problems:

min f(x) s.t. x ≥ 0

where, with the notation X = diag(x), we look for a constrained root of

Xg(x) = 0, x ≥ 0, g(x) ≥ 0, where g(x) = ∇f(x).

Vector function g(x) would be a monotone mapping and the solution is also called the monotone

complemtarity point.

We assume that f meets a Scaled Lipschitz condition: for any point x > 0

∥X (g(x+ d)− g(x)−∇g(x)d) ∥ ≤ βαd
T∇g(x)d, whenever ∥X−1d∥ ≤ α(< 1). (2)
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Examples of Scaled Lipschitz Functions

• f(x) = − log(x), g(x) = −1
x and g′(x) = 1

x2 : Not Lipschitz but Scaled Lipschitz

−1

x+ d
− −1

x
− d

x2
=

1

x

( ∞∑
p=2

(
−d
x

)p

)
≤ d2

x3
1

1− α
⇒ βα =

1

1− α
.

• f(x) = x log(x), g(x) = 1 + log(x) and g′(x) = 1
x : Not Lipschitz but Scaled Lipschitz.

• f(x) = ex, g(x) = ex and ex: Both Lipschitz and Scaled Lipschitz at Bounded x.
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Interior-Point Algorithms for More General Convex Optimization II

We start from a solution xk > 0 and g(xk) > 0 and they approximately satisfy the equations

Xs = µke, s = g(x), for some µk > 0. (3)

Such a solution exists because it is the (unique) optimal solution for the problem with logarithmic barrier

min f(x)− µk
∑
j

log(xj).

We replace µk by µk+1 = (1− η√
n
)µk and aim to find a solution x > 0 such that g(x) > 0

Xs = µk+1e, s = g(x).

Starting from (xk, sk), we apply the Newton iteration using the auxiliary variables s = g(x)

(sk = g(xk)):

Xkds + Skdx = (1− η√
n
)µke−Xksk,

ds = ∇g(xk)dx.
(4)
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Now we analyze the quality of the new iterate x+ = xk + dx together with s+ = g(x+).

Multiplying (XkSk)−1/2 to both sides of the first equation of (4), we have

D−1dx +Dds = (XkSk)−1/2((1− η√
n
)µke−Xksk),

where D = (Xk)1/2(Sk)−1/2. Note that dTxds = dTx∇g(xk)dx ≥ 0

∥D−1dx∥2 + ∥Dds∥2 ≤ ∥D−1dx +Dds∥2
= ∥(XkSk)−1/2((1− η√

n
)µke−Xksk)∥2

= η2µk.

From now on, we set 0 < η ≤ 1/2. Thus,

∥(Xk)−1dx∥ = ∥(XkSk)−1/2D−1dx∥ ≤ ∥(XkSk)−1/2∥∥D−1dx∥ ≤ η ≤ 1/2.

Consequently, 1/2 ≤ x+j /x
k
j ≤ 3/2 for all j. Moreover,

∥Dxds∥ = ∥D−1DxDds∥ = ∥D−1dx∥∥Dds∥ ≤ (∥D−1dx∥2 + ∥Dds∥2)/2 ≤ η2µk/2,
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and

dTx∇g(xk)dx = dTxds = dTxD
−1Dds ≤ ∥D−1dx|∥Dds∥ ≤ η2µk/2.

Consider

X+s+ − (1− γ)µke

= X+(sk + ds + g(x+)− g(xk)−∇g(xk)dx)− (1− γ)µke

= (Xk +Dx)(s
k + ds)− (1− γ)µke+X+(g(x+)− g(xk)−∇g(xk)dx)

= Dxds +X+(g(x+)− g(xk)−∇g(xk)dx).
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From g being scaled Lipschitz with β1/2 and the above inequalities we obtain

∥X+s+ − (1− η√
n
)µke∥ = ∥Dxds +X+(g(x+)− g(xk)−∇g(xk)dx)|

= ∥Dxds + (Xk)−1X+Xk(g(x+)− g(xk)−∇g(xk)dx)∥
≤ ∥Dxds∥+ ∥(Xk)−1X+∥∥Xk(g(x+)− g(xk)−∇g(xk)dx)∥
≤ ∥Dxds∥+ (3/2)∥Xk(g(x+)− g(xk)−∇g(xk)dx)∥
≤ ∥Dxds∥+ (3/2)β1/2d

T
x∇g(xk)dx

≤ (1/2 + (3/4)β1/2)η
2µk.

comparing with the initial error is ∥Xksk − (1− η√
n
)µke∥ = ηµk.

There is also a Homogeneous and Self-Dual Algorithm for solving the monotone complementarity

problem, which is a basic solver of MOSEK. The algorithm produces a certificate if no complementarity

solution exists.

(HOmcp.m, mcpfun.m and mcpJacobian.m of Chapter 15)
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Software Implementation

Cplex-Barrier IBM, GUROBI, COPT

SEDUMI: http://sedumi.mcmaster.ca/

MOSEK: http://www.mosek.com/products_mosek.html

SDDPT3: http://www.math.nus.edu.sg/˜mattohkc/sdpt3.html

DSDP (Dual Semidefinite Programming Algorithm):

http://www.stanford.edu/˜yyye/Col.html

CVX/ECOS: http://www.stanford.edu/˜boyd/cvx

hsdLPsolver and more: http://www.stanford.edu/˜yyye/matlab.html
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