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Would Convexity Help SOM?

Before we answer this question, let’s summarize a generic form one iteration of the Second Order Method

for solving ∇f(x) = g(x) = 0:

(∇g(xk) + µI)(x− xk) = −γg(xk), or

g(xk) +∇g(xk)(x− xk) + µ(x− xk) = (1− γ)g(xk).

Many interpretations: when

• γ = 1, µ = 0: pure Newton;

• γ and µ are sufficiently large: SDM;

• γ = 1 and µ decreases to 0: Homotopy or path-following method.
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A Path-Following Algorithm for Unconstrained Optimization I

For any µ > 0 consider the (unique) optimal solution x(µ) for problem

x(µ) = argmin f(x) +
µ

2
∥x∥2,

and they form a path down to x(0) and satisfy gradient equations with parameter µ:

g(x) + µx = 0, with µ = µk > 0. (1)

Let the approximation path error at xk with µ = µk be

∥g(xk) + µkxk∥ ≤ 1

2β
µk.

Then, we like to compute a new iterate xk+1, using Newton’s method with xk as an initial solution, such

that

∥g(xk+1) + µk+1xk+1∥ ≤ 1

2β
µk+1, where 0 ≤ µk+1 < µk.

If µk can be decreased at a geometric rate, independent of ϵ, and each update uses one Newton step,

then this would lead to a linearly convergent algorithm.
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Concordant Lipschitz Functions

We analyze the path-following algorithm when f is convex and meet a Concordant Lipschitz condition: for

any point x and a β ≥ 1

∥∇f(x+ d)−∇f(x)−∇2f(x)d∥ ≤ βdT∇2f(x)d, whenever ∥d∥ ≤ O(1) < 1 (2)

and x+ d in the function domain. Such condition can be verified using Taylor Expansion Series;

basically, the third derivative of the function is bounded by its second derivative.

• All quadratic functions are concordant Lipschitz with β = 0.

• Convex function ex is concordant Lipschitz with β = O(1) but it is not regular Lipschitz.

• Convex function − log(x) is neither regular Lipschitz nor concordant Lipschitz.

• Function f(x) := ϕ(Ax− b) is concordant Lipschitz if ϕ(·) is regular Lipschitz and strictly convex.
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A Path-Following Algorithm for Unconstrained Optimization II

When µk is replaced by µk+1, say (1− η)µk for some η ∈ (0, 1], we aim to find a solution x such that

g(x) + (1− η)µkx = 0,

we start from xk and apply the Newton iteration:

g(xk) +∇g(xk)d+ (1− η)µk(xk + d) = 0, or

∇g(xk)d+ (1− η)µkd = −g(xk)− (1− η)µkxk.
(3)

From the second expression, we have

∥∇g(xk)d+ (1− η)µkd∥ = ∥ − g(xk)− (1− η)µkxk∥
= ∥ − g(xk)− µkxk + ηµkxk∥
≤ ∥ − g(xk)− µkxk∥+ ηµk∥xk∥
≤ 1

2βµ
k + ηµk∥xk∥.

(4)
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On the other hand

∥∇g(xk)d+ (1− η)µkd∥2 = ∥∇g(xk)d∥2 + 2(1− η)µkdT∇g(xk)d+ ((1− η)µk)2∥d∥2.

From convexity, dT∇g(xk)d ≥ 0, together with (4) we have

((1− η)µk)2∥d∥2 ≤ ( 1
2β + η∥xk∥)2(µk)2 and

2(1− η)µkdT ∥∇g(xk)d ≤ ( 1
2β + η∥xk∥)2(µk)2.

The first inequality implies

∥d∥2 ≤ (
1

2β(1− η)
+

η

1− η
∥xk∥)2.

Let the new iterate be x+ = xk + d. The second inequality implies

∥g(x+) + (1− η)µkx+∥
= ∥g(x+)− (g(xk) +∇g(xk)d) + (g(xk) +∇g(xk)d) + (1− η)µk(xk + d)∥
= ∥g(x+)− g(xk) +∇g(xk)d∥
≤ βdT∇g(xk)d ≤ β

2(1−η) (
1
2β + η∥xk∥)2µk.
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We now just need to choose η ∈ (0, 1) such that

( 1
2β(1−η) +

η
1−η∥x

k∥)2 ≤ 1 and
βµk

2(1−η) (
1
2β + η∥xk∥)2 ≤ 1

2β (1− η)µk = 1
2βµ

k+1.

For example, given β ≥ 1,

η =
1

2β(1 + ∥xk∥)
would suffice.

This would give a linear convergence since ∥xk∥ is typically bounded following the path to the optimality,

while the convergence in non-convex case is only arithmetic.

Convexity, together with some types of second-order methods, make convex optimization solvers into

practical technologies.
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A Path-Following Algorithm for Unconstrained Optimization III

More question related to the path-following algorithm:

• For convex case, since x(µ) is the unique minimizer of

min f(x) +
µ

2
∥x∥2,

what is the limit of x(µ) as µ → 0+?

• More practical strategy to decrease µ?

• Apply first-order or 1.5-order algorithms for solving each step of the path-following, since it is to

minimize a strictly convex quadratic function?

• What happen when f is bounded from below but not convex, and just meet the standard Lipschitz

condition? The key is analyzing x(µ), which may form multiple paths. Then can we still follow the

path?

(QPpath.m of Chapter 8)
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Linear Programming Methodological Philosophy

Optimality Conditions: (1) Primal Feasibility, (2) Dual Feasibility, (3) Zero-Duality Gap/Prima-Dual

Complementarity.

Recall that the (primal) Simplex Algorithm maintains the primal feasibility and complementarity while

working toward dual feasibility. (The Dual Simplex Algorithm maintains dual feasibility and

complementarity while working toward primal feasibility.)

In contrast, interior-point methods will move in the interior of the feasible region, hoping to by-pass many

corner points on the boundary of the region. The primal-dual interior-point method maintains both primal

and dual feasibility while working toward complementarity.

The key for the simplex method is to make computer see corner points; and the key for interior-point

methods is to stay in the interior of the feasible region.
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Interior-Point Algorithms for LP

(LP ) min cTx s.t. Ax = b, x ≥ 0 <=> (LD) max bTy s.t.ATy + s = c, s ≥ 0.

intFp = {x : Ax = b, x > 0} ̸= ∅

intFd = {(y, s) : s = c−ATy > 0} ̸= ∅.

Let z∗ denote the optimal value and

F = Fp ×Fd.

We are interested in finding an ϵ-approximate solution for the LP problem:

xT s = cTx− bTy ≤ ϵ.

For simplicity, we assume that an interior-point pair (x0,y0, s0) is known, and we will use it as our initial

point pair.

10



MS&E314: Optimization in ML&DS Lecture Note #14

Barrier Functions and Analytic Center

Consider the barrier function optimization problems:

(PB) minimize −
∑n

j=1 log xj

s.t. x ∈ intFp

and
(DB) maximize

∑n
j=1 log sj

s.t. (y, s) ∈ intFd

The maximizer x (or (y, s)) of (PB) (or (BD)) is called the analytic center of bounded polyhedron Fp (or

Fd). Applying the KKT conditions and using X = diag(x), we have

−X−1e−ATy = 0 or − e−XATy = 0, Ax = b, x > 0.

After introducing auxiliary vector s = X−1e, the conditions become

Xs = e

Ax = b

−ATy − s = 0

x > 0.

or

Sx = e

Ax = 0

−ATy − s = −c

s > 0.


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S1

S2

S3

S4

S5

Figure 1: The dual analytic center maximizes the product of slacks.

12



MS&E314: Optimization in ML&DS Lecture Note #14

Examples

Fp = {x :
∑
j

xj = 1, x ≥ 0}.

The analytic center of Fp would be

xc = (
1

n
; ...;

1

n
), y = −n, s = (n; ...; n).

Fd = {y : 0 ≤ y ≤ e}.

The analytic center of Fd would be

yc = argmax
∑
i

(log(yi) + log(1− yi)) = argmax
∑
i

log(yi(1− yi))

that is

yc = (
1

2
; ...;

1

2
), s =

1

2
e, x = 2e.

Why “analytic”: depending on the analytical representation data.
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Logarithmic Function and Scaled Concordant Lipschitz

Lemma 1 Let B(x) = −
∑n

j=1 log(xj). Then, for any point x > 0 and direction vector d such that

∥X−1d∥∞ ≤ α(< 1),

−eTX−1d ≤ B(x+ d)−B(x) ≤ −eTX−1d+
∥X−1d∥2

2(1− α)
.

The Barrier function property can be generalized to the so-called Second-Order Scaled Concordant

Lipschitz Condition: for any x > 0 and x+ d in the function domain:

∥X
(
∇f(x+ d)−∇f(x)−∇2f(x)d

)
∥ ≤ βαd

T∇2f(x)d, whenever ∥X−1d∥ ≤ α(< 1).

Such condition can be verified using Taylor Expansion Series; basically, the scaled third derivative of the

function is bounded by its (unscaled) second derivative.

• All quadratic functions are scaled concordant Lipschitz with βα = 0.

• Convex function − log(x) is scaled concordant Lipschitz with βα = 1
(1−α) .

• All power functions {xp : x > 0} with integer p are scaled concordant Lipschitz with βα = O(p)
(1−α) .
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Affine-Scaling Gradient Projection

To compute the analytic center, we consider the affine-scaling GPM from any feasible x > 0:

minimize −eTX−1d

s.t. Ad = 0, ∥X−1d∥ ≤ α
or

minimize −eTd′

s.t. AXd′ = 0, ∥d′∥ ≤ α

which has a close-form solution

d′ = α(I −XAT (AX2AT )−1AX)e/∥(I −XAT (AX2AT )−1AX)e∥.

Note that d = Xd′ so that we let x+ = x+ d, which should remain positive:

x+ = x+ d = x+Xd′ = X(e+ d′) > 0

as long as x > 0 and ∥d′∥ < 1. Then, from Lemma 1 the Barrier function value would be decreased at

least by

B(x+)−B(x) ≤ −α∥(I −XAT (AX2AT )−1AX)e∥+ α2

2(1− α)
.
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Convergence Speed Analysis

For simplicity, let y(x) = (AX2AT )−1AXe and s(x) = ATy(s) so that

(I −XAT (AX2AT )−1AX)e = e−Xs(x).

Note that y(x) minimizes miny ∥e−XATy∥2.

Thus, as long as ∥e−Xs(x)∥ ≥ 1, the Barrier function can be decreased by a universal constant

−α+ α2

2(1−α) = −3/4 when we set α = 1/2.

If the quantity ∥e−Xs(x)∥ < 1, then we simply let x+ = x+X(e−Xs(x)), in which case we now

prove ∥e−X+s(x+)∥ ≤ ∥e−Xs(x)∥2 (quadratic convergence)!

∥e−X+s(x+)∥2 ≤ ∥e−X+s(x)∥2, (because y(x+) minimizes the squares)

= ∥e− (2X −X2S(x)s(x)∥2

=
∑n

j=1

(
1− 2xjsj(x) + x2

j (sj(x))
2
)2

=
∑n

j=1(1− xjsj(x))
4

≤
(∑n

j=1(1− xjsj(x))
2
)2

= ∥e−Xs(x)∥4.
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Analytic Volume and Cutting Plane for LP: Geometric Interpretation

AV (Fd) :=
n∏

j=1

s̄j =
n∏

j=1

(cj − aTj ȳ)

can be viewed as the analytic volume of polytope Fd or simply F in the rest of discussions.

If one inequality in F , say the first one, needs to be translated, change aT1 y ≤ c1 to aT1 y ≤ aT1 ȳ; i.e.,

the first inequality is parallelly moved and it now cuts through ȳ and divides F into two bodies.

Analytically, c1 is replaced by aT1 ȳ and the rest of data are unchanged. Let

F+ := {y : aTj y ≤ c+j , j = 1, ..., n},

where c+j = cj for j = 2, ..., n and c+1 = aT1 ȳ.

17



MS&E314: Optimization in ML&DS Lecture Note #14

Figure 2: Translation of a hyperplane to the AC.

18



MS&E314: Optimization in ML&DS Lecture Note #14

Analytic Volume Reduction of the New Polytope

Let ȳ+ be the analytic center of F+. Then, the analytic volume of F+

AV (F+) =
n∏

j=1

(c+j − aTj ȳ
+) = (aT1 ȳ − aT1 ȳ

+)
n∏

j=2

(cj − aTj ȳ
+).

We have the following volume reduction theorem:

Theorem 1
AV (F+)

AV (F)
≤ exp(−1).
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Proof

Since ȳ is the analytic center of F , there exists x̄ > 0 such that

X̄ s̄ = X̄(c−AT ȳ) = e and Ax̄ = 0.

Thus,

s̄ = (c−AT ȳ) = X̄−1e and cT x̄ = (c−AT ȳ)T x̄ = eTe = n.

We have

eT X̄ s̄+ = eT X̄(c+ −AT ȳ+) = eT X̄c+

= cT x̄− x̄1(c1 − aT1 ȳ) = n− 1.
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AV (F+)

AV (F)
=

n∏
j=1

s̄+j
s̄j

=
n∏

j=1

x̄j s̄
+
j

≤

 1

n

n∑
j=1

x̄j s̄
+
j

n

=

(
1

n
eT X̄ s̄+

)n

=

(
n− 1

n

)n

≤ exp(−1).
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Analytic Volume of Polytope and Multiple Cutting Planes

Now suppose we translate k(< n) hyperplanes, say 1, 2, ..., k, moved to cut the analytic center ȳ of F ,

that is,

F+ := {y : aTj y ≤ c+j , j = 1, ..., n},

where c+j = cj for j = k + 1, ..., n and c+j = aTj ȳ for j = 1, ..., k.

Corollary 1
AV (F+)

AV (F)
≤ exp(−k).
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Barrier Regularization Function for LP: Algebraic Implementation

Consider the LP pair with the barrier function

(LPB) minimize cTx− µ
∑n

j=1 log xj

s.t. x ∈ intFp

<=>
(LDB) maximize bTy + µ

∑n
j=1 log sj

s.t. (y, s) ∈ intFd,

and they are primal-dual to each other and share a common set of KKT Optimality Conditions:

Xs = µe

Ax = b

−ATy − s = −c;

(5)

where barrier parameter

µ =
xT s

n
=

cTx− bTy

n
,

so that it’s the average of complementarity or duality gap. As µ varies, the optimizers form the LP central

paths in the primal and dual feasible regions, respectively.
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Figure 3: The central path of y(µ) in a dual feasible region.
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Examples

min
∑
j

cjxj − µ
∑
j

log(xj) s.t.
∑
j

xj = 1.

cj −
µ

xj
= y, xj > 0, ∀j,

thus, xj =
µ

cj−y , ∀j. Then, from∑
j

µ

cj − y
= 1, cj − y > 0, ∀j,

we can solve y(µ) and x(µ) as the roots of polynomials.
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Central Path for Linear Programming

C = {(x(µ),y(µ), s(µ)) ∈ intF : Xs = µe, 0 < µ < ∞} ;

is called the (primal and dual) central path of linear programming.

Theorem 2 Let both (LP) and (LD) have interior feasible points for the given data set (A,b, c). Then for

any 0 < µ < ∞, the central path point pair (x(µ),y(µ), s(µ)) exists and is unique. Moreover, the

followings hold.

i) The central path point (x(µ), s(µ)) is bounded for 0 < µ ≤ µ0 and any given 0 < µ0 < ∞.

ii) For 0 < µ′ < µ,

cTx(µ′) < cTx(µ) and bTy(µ′) > bTy(µ)

if both primal and dual have no constant objective values.

iii) (x(µ), s(µ)) converges to an optimal solution pair for (LP) and (LD). Moreover, the limit point

x(0)P∗ > 0 and the limit point y(0), s(0)Z∗ > 0 are the analytic centers of the optimal solution

sets of primal and dual, respectively; where (P ∗, Z∗) is the strictly complementarity partition if

variable index set {1, 2, ..., n}.
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Proof of (iii)

Since x(µ) and s(µ) are both bounded, they have at least one limit point which we denote by x(0) and

s(0). Let x∗
P∗ > 0 (x∗

Z∗ = 0) and s∗Z∗ > 0 (s∗P∗ = 0), be the analytic centers on the optimal sets of

on the primal and dual optimal faces, respectively, that is, they are the maximizers of

{
∏

j∈P∗ xj : AP∗xP∗ = b, xP∗ ≥ 0} and

{
∏

j∈Z∗ sj : sZ∗ = cZ∗ −AT
Z∗y ≥ 0, cP∗ −AT

P∗y = 0}, respectively. Note

(x(µ)− x∗)T (s(µ)− s∗) = 0, so that

n∑
j

(
s∗jx(µ)j + x∗

js(µ)j
)
= nµ, or

∑
j∈P∗

(
x∗
j

x(µ)j

)
+

∑
j∈Z∗

(
s∗j

s(µ)j

)
= n.

Therefore, from the arithmetic-geometric mean inequality we have

∏
j∈P∗

x∗
j

x(µ)j

∏
j∈Z∗

s∗j
s(µ)j

≤ 1, or

 ∏
j∈P∗

x(µ)j

 ∏
j∈Z∗

s(µ)j

 ≥

 ∏
j∈P∗

x∗
j

 ∏
j∈Z∗

s∗j


The limit points must also satisfy the inequality which implies

∏
j∈P∗ x(0)j ≥

∏
j∈P∗ x∗

j and∏
j∈Z∗ s(0)j ≥

∏
j∈Z∗ s∗j . But the analytic center is unique so that the claim is true.
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The Primal-Dual Path-Following Algorithm for LP

In general, we start from an (approximate) central path point (xk,yk, sk) ∈ F such that

∥Xksk − µke∥ ≤ σµk, for some σ ∈ [0, 1).

Then, let µk+1 = (1− η)µk for some η ∈ (0, 1], we aim to find a new pair (x,y, s) ∈ F such that

Xs = µk+1e.

We start from (xk,yk, sk) ∈ F and apply the Newton iteration for direction vectors (dx,dy,ds):

Skdx +Xkds = µk+1e−Xksk

Adx = 0

ATdy + ds = 0

,

then let xk+1 = xk + dx, yk+1 = yk + dy, sk+1 = sk + ds. Carefully choosing σ = O(1)

and η = O( 1√
n
) guarantees (xk+1, sk+1) > 0 and

∥Xk+1sk+1 − µk+1e∥ ≤ σµk+1, for the same σ ∈ [0, 1).

Too many restrictions when following a path... Is a function-driven interior-point algorithm?
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