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Features of FOM

FOM requires only matrix-vector multiplication:

1. Matrix-vector multiplication is very suitable for utilizing modern hardware and distributed computation

2. Matrix factorization free. The memory usage is relatively low.

FOM is particularly good at solving large instances

With help of GPU, recent research shows PDHG is fast when the problem becomes large, see

• “cuPDLP. jl: A GPU implementation of restarted primal-dual hybrid gradient for linear programming in

Julia”, Lu/Yang, arXiv:2311.12180, 2023.

• “cuPDLP-C: A Strengthened Implementation of cuPDLP for Linear Programming by C language,” Lu et

al. arXiv:2312.14832, 2023.
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Figure 1: Geometric average runtime on problems from LP relaxations of MIPLIB 2017 (termination toler-

ance 10−4)
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Primal-Dual Hybrid Gradient (PDHG) Method

For the standard-form LP:

(Primal) min c⊤x s.t. Ax = b , x ≥ 0

Instead of directly dealing with the original problem, we deal with the primal-dual form to avoid doing

expensive projections onto the feasible set {x : Ax = b, x ≥ 0}.

(Dual) max b⊤y s.t. A⊤y ≤ c

Via Lagrangian:

(Primal-dual) min
x≥0

max
y

L(x, y) := c⊤x+ b⊤y − x⊤A⊤y

Saddle point: The (x⋆, y⋆) with x⋆ ≥ 0 is a saddle point of L(x, y) if for any x ≥ 0 and y:

L(x⋆, y) ≤ L(x⋆, y⋆) ≤ L(x, y⋆)
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Figure 2: Saddle point

Classical Gradient Descent Ascent:

xk+1 = Projx≥0

(
xk − η

(
c−A⊤y

))
=

(
xk − η

(
c−A⊤y

))+
yk+1 = yk + η

(
b−Axk

)
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Gradient Descent Ascent May Not Converge

For example, in the saddle point problem maxx miny xy, we have closed form of each iteration: xk

yk

 =

 1 η

−η 1

k  x0

y0



The determinant of

 1 η

−η 1

 is always strictly larger than 1 no matter how small η is, which means

this approach never converges.
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Primal-Dual Hybrid Gradient (PDHG) Method

xk+1 = Projx≥0

(
xk − η

(
c−A⊤y

))
yk+1 = yk + η

(
b−A(2xk+1 − xk)

)
The update of yk uses the idea of momentum.

For the small saddle point problem maxx miny xy, we also have closed form of each iteration: xk

yk

 =

 1 η

−η 1− 2η2

k  x0

y0



The modulus of eigenvalues of

 1 η

−η 1− 2η2

 are smaller than 1 if η < 1, so PDHG converges.

“A first-order primal-dual algorithm for convex problems with applications to imaging,” Chambolle/Pock,

Journal of mathematical imaging and vision, 2011.
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Metrics of LP

For the original LP problem, usually we use the following metrics for termination:

1. Primal feasibility ∥Ax− b∥2 ≤ ε

2. Dual feasibility ∥(c−A⊤y)−∥2 ≤ ε

3. Primal-dual gap |c⊤x− b⊤y| ≤ ε

However, for a general LP minx∈X maxy∈Y L(x, y), the duality gap measurement at z = (x, y) is

max
ŷ∈Y

L(x, ŷ)−min
x̂∈X

L(x̂, y) = max
ẑ:=(x̂,ŷ)∈Z:=X×Y

{L(x, ŷ)− L(x̂, y)}

Obviously, when X = Rn
+, Y = Rm, the duality gap is +∞ almost always.

Normalized duality gap at z = (x, y) with radius r:

ρ(r; z) :=
1

r
· max
ẑ∈{ẑ∈Z:∥z−ẑ∥≤r}

{L(x, ŷ)− L(x̂, y)}
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Key Properties Normalized Duality Gap

1. No longer equal to ∞.

2. Computing or approximating ρ(r; z) is very cheap.

3. For any r, ρ(r; z) = 0 if z ∈ Z⋆ and ρ(r; z) > 0 if z /∈ Z⋆.

4. For any r, z, ρ(r; z) ≥ ∥Ax− b∥ and ρ(r; z) ≥ ∥(c−A⊤y)−∥. The normalized duality gap is

always an upper bound of the primal and dual infeasibility.

5. ρr(z) ≥ min
{

1
∥z∥ ,

1
r

}(
c⊤x− b⊤y

)+
. The normalized duality gap is a good upper bound of the

duality gap if r and ∥z∥ are not too large.

“Faster first-order primal-dual methods for linear programming using restarts and sharpness,” Applegate et

al.,, Mathematical Programming, 2023.
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Ergodic Convergence of PDHG

Theorem 1 (Applegate et al. 2023) Consider the PDHG iterates
(
xk, yk

)
with initial solution

(
x0, y0

)
, it

holds for any x ≥ 0, y and η ≤ 1
∥A∥2

that

1. ρ∥z̄k−z0∥
(
z̄k

)
≤ 4∥z̄k−z0∥

k

2.
∥∥z̄k − z0

∥∥ ≤ 2 · dist
(
z0, Z⋆

)
Here z̄k := (x̄k, ȳk) := 1

k

∑k
i=1(x

i, yi), and z0 := (x0, y0).

1. Here the norm ∥ · ∥ is the norm induced by

 I −ηA⊤

−ηA I


2. η needs to be small to guarantee the induced “norm” is a norm.

3. Item 2 means ∥z̄k − z0∥, ∥z̄k∥ are never too large. Therefore, item 1 actually presents an “O(1/ϵ)”

convergence rate of the standard metrics (primal and dual infeasibility, duality gap), which rate is

typical for FOM but LP applications we usually expect faster rate.
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Trajectory of PDHG for minx maxy xy

Figure 3: Final iterates of PDHG . Figure courtesy Lu.
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Average Trajectory of PDHG for minxmaxy xy

Figure 4: Average iterates of PDHG . Figure courtesy Lu.
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Restart Trajectory of PDHG for minxmaxy xy

Figure 5: Restarted iterates of PDHG . Figure courtesy Lu.
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PHDG with Restarts

Restart Scheme: Fixed frequency restart, adaptive restart ...
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Analyses of PDHG with Restarts I

Sharpness of ρ(r; z) The primal-dual LP problem is α-sharp on S ⊆ Z if it holds for all

r ∈ (0, diam(S)] and z ∈ S that

ρ(r; z) ≥ α · dist(z, Z⋆)

In any given bounded region S, the ρ(r; z) is sharp. The updates of PDHG ensure all iterates are in a

bounded region (Theorem 1), with which the sharpness ensures the distance to optimal solutions shrinks

one half every
⌈
8∥A∥
α

⌉
iterations.
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Theorem 2 (Applegate et al. 2023) All iterates of PDHG are in B4·dist(z0,Z⋆)(z
0). And LP is α-sharp

with

α ≥ 1

H(K) (1 + 4 · dist (z0, Z∗))

where H(K) is the Hoffman constant of the KKT system of LP.

H(K) is the Hoffman constant of the inequality set {Kz ≥ h}, where

K :=



I 0

−A 0

A 0

0 −AT

−cT bT


, h :=



0

−b

b

−c

0


H(K) is hard to compute or analyze, but “Computational Guarantees for Restarted PDHG for LP based

on “Limiting Error Ratios” and LP Sharpness,” Xiong/Freund, arXiv preprint arXiv:2312.14774 shows that

sharpness α is connected with the geometry and stability of LP.
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Restart Strategies I

Fixed Frequency Restart:

Suppose α and ∥A∥ are known to the user, restart the algorithm every⌈
8∥A∥
α

⌉
iterations

Adaptive Restart:

Restart the algorithm whenever the normalized duality gap has sufficient decay

ρ
(∥∥z̄n,t − zn,0

∥∥ ; z̄n,t) ≤ 0.5 · ρ
(∥∥zn,0 − zn−1,0

∥∥ ; zn,0) .
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Restart Strategies II

With either of the above restart schemes, we have the following linear convergence guarantee:

Theorem 3 (Applegate et al. 2023) The restarted PDHG finds a solution z such that dist(z, Z⋆) ≤ ε

within

O

(
∥A∥
α

· log
(
1

ε

))
iterations.

An important research question: How to explain and understand α? And how to improve α? [see

Xiong/Freund arXiv:2312.14774, Lu/Yang arXiv:2307.03664, Hinders arXiv:2309.03988]
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Numerical Experiments

LP relaxation of a quadratic assignment problem:
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Other Enhancements PDHG I

Infeasibility detection

Use PDHG to find the certificates of infeasibility:

1. The primal problem is infeasible if, and only if, there exists y ∈ Rm, s.t. b⊤y > 0 and A⊤y ≤ 0.

2. The dual problem is infeasible if, and only if, there exists x ∈ Rm, s.t.

c⊤x < 0, Ax = 0 and x ≥ 0.

Adaptive step sizes

Different step-size for primal and for dual, aiming to balance the primal infeasibility and dual infeasibility.

Presolve: Apply transformations such as detecting inconsistent bounds, removing empty rows and

columns, and removing fixed variables ...
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Other Enhancements PDHG II

Diagonal preconditioning

Solve the preconditioner problem

min
x≥0

(D2c)
⊤x s.t.(D1AD2)x = D1b

instead. And then D2x
⋆ recovers an optimal solution for the original problem. The preconditioner is

supposed to improve the condition number of the matrix.

Addressing general form LP

Directly address the general form LP instead of the standard form, to work on the better sharpness.

minx∈Rn c⊤x

s.t. Gx ≥ h, Ax = b, l ≤ x ≤ u
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