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First-Order Algorithm: the Steepest Descent Method (SDM) I

¢! .

Let f be a differentiable function and assume we can compute gradient (column) vector@. We want to

solve the unconstrained minimization problem

In the absen er information, we seek a first-order KKT or stationary point of f, that is, a point x*
at which [V f (x*) = 0. Here we choose direction vector d¥ = —V f(x") as the search direction at x",

which is the direction of steepest descent.

The numb@alled step-size, is chosen “appropriately” as

o € arg mlnf —O7f Liive. qw\fd'\

_

—

Then the new iterate is defined as x* ™1 = x* — oszf(xk).)

————

In some implementations, step-size o is fixed through out the process — independent of iteration count k
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SDM Example: Unconstrained Quadratic Optimization

ere () € R™™" is symmetric and positive definite. This implies that the
e. The unique minimum x* of f(x) exists and is given by the solution of

}j(x)’f = Qx+c=0,

the system of linear equations

or equivalently

Qx = —c.
The iterative scheme becomes, from d* = —(Qx" + ¢),

To compute the step size, %

f(x* +ad")
= ¢ (x"+ad") + :(x* + ad")TQ(x* + ad®)
_ CTXk —I—OzCTdk + %(Xk)TQXk —|—Oz<Xk)TQdk i %Qz2<dk)TQdk

, we consider
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k

which is a strictly convex quadratic function of cv. Its minimizer o™ is the unique value of @ where the

derivative f’(x’“ + ozdk) vanishes, i.e., where

cl'd® + (x")TQd" + a(d®) ' Qd" =o.

Thus -
o _cTdr - (xM)TQdE /|2

(dk)TQdk (dk)TQdk'

The recursion for the method of steepest descent now becomes

BTSSR A [ G Wt
(dk)TQdk ’

o ——

Therefore, minimize a strictly convex quadratic function is equivalent to solve a system of equation with a

positive definite matrix. The former may be ideal if the system only needs to be solved approximately.
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Iterate Convergence of the Steepest Descent Method I

The following theorem gives some conditions under which the steepest descent method will generate a

sequence of iterates that converge .

Theorem 1 Let f : R™ — R be given. For some given pointx" € R", let the level set
X0 = {x € B": f(x) < f(x*)}

be bounded. Assume further that | is continuously differentiable on the convex hull of X°. Let {xk} be
the sequence of points generated by the steepest descent method initiated at x". Then every
accumulation point of {xk} is a stationary point of f .

Proof: Note that the assumptions imply the compactness of XY, Since the iterates will all belong to XV
the existence of at least one accumulation point of {Xk} is guaranteed by the Bolzano-Weierstrass
Theorem. Let X be such an accumulation point, and without losing generality, {x" } converge to %.

Assume V f(x) # 0. Then there exists a value & > O and a § > 0 such that
f(x —aVf(x))+ 06 = f(X). Thismeans that y := x — @V f(X) is an interior point of X" and
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For an arbitrary iterate of the sequence, say Xk, the Mean-Value Theorem implies that we can write
fx* —avi(xh) = f(3) + (V") (x* —avi(x") -3)

where y” lies between x* — aV f(x") andy. Then {y*} — yand {Vf(y")} — Vf(y) as
{x¥} — x. Thus, for sufficiently large %,

0 0
FO — VS () < S(9) + 2 = F(8)— 3.
Since the sequence { f(x*)} is monotonically decreasing and converges to f(X), hence
0
f&) < fGM) = f(x — arVF(x") < f(x" — aVF(x")) < f(%) - 5

which is a contradiction. Hence V f(x) = 0.

Remark According to this theorem, the steepest descent method initiated at any point of the level set X 0

will converge to a stationary point of f, which property is called global convergence.

This proof can be viewed as a special form of Theorem 1: the SDM algorithm mapping is closed and the

objective function is strictly decreasing if not optimal yet.

6
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Convergence Speed of the SDM for Strongly Convex QP

The convergence rate of the steepest descent method applied to convex quadratic functions is known to
be linear. Suppose () is a symmetric positive definite matrix of order n and let its eigenvalues be
0 < Ay <--- < \,. Obviously, the global minimizer of the quadratic form f(x) = %XTQX is at the

origin. 4%; 0 O

It can be shown that when the steepest descent method is started from any nonzero point x" € R"™, there

will exist constants ¢; and ¢, such that (page 235, L& < |
xaZ F)
O0<cg < —F7F<c < <1, k=0,1,....

Intuitively, the slow rate of linear convergence of the steepest descent method can be attributed the fact

that the successive search directions are perpendicular.

Consider an arbitrary iterate x*. At this point we have the search direction d* = —Vf(xk). To find the
next iterate x* 1 we minimize f(x* — oV f(x")) with respect to & > 0. At the minimum ", the
derivative of this function will equal zero. Thus, we obtain V f (x* 1)1V f(x*) = 0.

7
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—
Convergence Speed of the SDM for Minimizinq/fipschitz Functions i \
Let f(x) be differentiable every where and satisfy the (first-ordchitz condition, that is, for any

two points@ —15: X\‘B—X
_ < — ~ 1
IVFG) = VIO Blx =yl gaus= 0K O,
for a positive real constant 5. Then, we have \M \\ Q. CY -1 \\ . 5}” \l xv

Lemma 1 Let f be a 3-Lipschitz function. Then for any two points X and y

fx) = f(y) = VIE) (x—y) <5

At the kth step of SDM, we have
Fx) — Fc) < V10T (e x) + 5 — x|

The left hand strict convex quadratic function of x establishes a upper bound on the objective reduction.
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Let us minimize the quadratic function

x"t! = argmin Vf(x")?(x — x") + §HX — X

kH2

and let the minimizer be the next iterate. Then it has a close form:

[(x"H) —

o

Then, after (> 1) steps, we must have

£©
rf(xo) ‘% 23 Z IV £(x*)]1%. 2%[&@\_ 2 @)
>/_/’———,—\’ <=
(—L}D\ % - _K/’-\?:" %"

Bat
Theorem 2 (Error Convergence Estimate Theorem) Let the objective function p* = inf f (X) be finite

and let us stop the SDM as soon as ||V f (x*)|| < e for a given tolerance ¢ € (0 1). Then the SDM

9
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0 *
terminates fn 22\ (tg)_p ) steps.

0 *
Proof: From (3), after K = 25(f(>€<2)—p )

steps

K-1

. 1
) =p" 2 f(x") = f(x*) = 53 Z [V 5]
If ||V f(x%)|| > eforallk = 0,..., K — 1, then we have

Fx0) — p" >%e > f(x0) = p

which is a contradiction.
B2 ||1x°—x*?
62

Corollary 1 If a minimizer x* of f is attainable, then the SDM terminates in steps.

The proof is based on Lemma 1 with x = x" and y = x* and noting V f(y) = V f(x*) = 0:

([0 Lex )\ =\&
FO0) —p = £6) — ) < D ez ,( ©
OC—{;
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The SDM for Unconstraineg Convex Eipschitz Optimization I

Here we consider f(x) being convex and differentiable everywhere and satisfying the (first-order)
[3-Lipschitz condition. Given the knowledge (3, we again adopt the fixed step-size rule:

L — xh 1y p(xk), @)

B

The following lemma is instrumental for establishing the global convergence rate of the Steepest Descent

Method in this case.

Lemma 2 /t holds for all x andy € R" that

F(x) — £(y) = [V (x —y) < —%HW(X) Vi) ®

Proof: Fixan x € R". Define F(y) = f(y) + [V f(x)]!(x —y) fory € R™. Then (5) is equivalent
to ['(x) — F(y) < —||[VF(y)||?/(23). This inequality holds because V I is 3-Lipschitz and F'(x) is
the global minimum of F', as F'is convex and V F'(x) = 0.

Theorem 3 For convex Lipschitz optimization the Steepest Descent Method generates a sequence of

11
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solutions such that

k * 5 0 * ]2
fx5) = f(x") < 2<k+1)HX — x| (6)
V3B o L ST IR

i, VTG < i ~ :

where we assume that x* is a minimizer of the problem. \ <
s 0 Cg)
Proof: According to Lemma 2, for the gradient method (4), we have
FxF) = f(x*) <[V (" —x*) — 55V (xP)]1?

_ B(Xk k+1) (ch o X*) o ngk o Xk+1H2 8

_ g(xk o Xk+1)T(Xk 4+ Xk—i—l) o 2X*)

= DIk = x* |2 =[x —x7)?).
On the other hand, as we have proved for general Lipschitz optimization case,

1
f(xF) = f(x") > %HVf(x’“)HQ. (9)

12
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Hence { f(x")} is nonincreasing. Consequently,

dOIfEY = f(x9)] > (k+1) [f(x") = f(x9)],

[=0

which renders (6) together with (8). Meanwhile, inequality (7) follows from (8) and

> If(x) - DO D) = f(xTY)]

(=0 =1

I\/ 'V

1 2
15k 20+ 1) min VG

where the second inequality uses (9).

Remark When k& = 0, inequalities (6) and (7) reduce to

F0) — 1) < D0 P and [5G < Bl - x|

which cannot be improved. \ @ ’
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Forward and Backward Tracking Step-Size Method I

In most real applications, the Lipschitz constant 5 is unknown. Furthermore, we like to use the smallest
localized Lipschitz constant ﬁk at iteration & such that

k \
fx" +ad?) = f(x7) = VI (ad?) < T flad?)®, TR0
where d* = —V f(x"), to decide the step-size o = 5%

Consider the following step-size strategy: stat at a good step-size guess o > 0:

k k k
(1): fa < 2UE )HC{,ST‘CQ +247) then doubling the step-size: v +— 20, stop as soon as the inequality is

N k k
reversed and select the latest o with v < 2/ )Hc{’gﬂ{? taod?)).

k k k
(2): Otherwise halving the step-size: v <— «v/2; stop as soon as v < 2(/(x )H(];ST‘CQ +ad?)) and return it.

Prove that the selected step-size

11
2pF = % = gE
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The Barzilai and Borwein Method '

g,
/ 7 VF(_\L“/‘I )
There is a steepest descent method (Barzilai and Borwein 88) that chooses the step-size as follows:
\&
- AF = xF — xF1 and Alg = Vf(x") - Vfx"1)= & (10)
sor 7
= > kNT Ak KNT Ak
& ak o (Aiﬁ) Ag or Oék L <A9@) A:}:
I
(AE)TAK (AE)TAE
Then (S \orxu0
~ x"tl = xF — oV F(x"). (11)

For convex quadratic minimization with Hessian (), A’g‘“ — QAC’Z, the two step size formula become

AkT Ak AkTAk
ak:<x)onrak:<x) T

(AZ)TQ?AL (AD)" QAL

and it is between the reciprocals of the largest and smallest non-zero eigenvalues of () (Rayleigh

quotient).
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An Explanation why the BB Method Works I

For convex quadratic minimization, let the distinct nonzero eigenvalues of Hessian () be A1, Ao, ..., Ax;
and let the step size in the SDM be aFf = i k=1, ..., K. Then, the SDM terminates in K iterations

from any starting point x0.

b . 2
In the BB method, & minimizes qu %(_)( )

"
|Az — aAgll = [|A7 — aQAZ].

If the error becomes 0 plus || A% || # 0, - will be a nonzero eigenvalue of () — this is learning via
Rayleigh quotient.

Another interpretation: one-dimensional Newton - (the second choice of) o minimizes the quadratic

(approximate) objective function along the negative-gradient direction at step £ — 1.

On the other hand, many questions remain open for the BB method. «© ﬁ

16 \\'U
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Double-Directions: The QP Heavy-Ball Method (Polyak 64) I

W

k+1 _ Jk k VAL — VAL ko k—1
x"T =x Vi )+ | ——=———= | (X" —x"7).
where the convergence rate e improved to
g

(evm)' g (222

\/)\n_|'\/)\1 >\V\‘+)‘\

This is also called the Parallel-Tangent or Conjugate Direction method, where the second direction-term in
the formula is nowadays called “acceleration” or“momentum” direction.

For minimizing general convex functions, we can let

x"Th = xF — IV F(xP) + a™(xF — %) = xF + d(a?, a™),
/ -

where the pair of step-sizes (cvg ) ozm) can be chosen to £

min Vf(xk)d(ozg, a™) 4 1Cl(Oég, Oém)VQf(Xk)d(Oéga a™), .
(a9,a?) . 2 /.
gl — T4E)
e et

o5
| <
where x! can be computed from the SDM step. \ LA‘“\“ =1 \ A

-~
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DRSOM: The Close-Form Step-Size from Quadratic Approximation I
Let d” -g =V /f(x anhen the step-sizes can be chosen from

THk k dk THk k ~ HngQ —GC'X‘
—(d )THk k (dk)Tdek a™ _(g )Tdk HAL
If the Hessian V2 ) is not available, one can approximate Hli
e N(,f__f__/—-\_.)a”d H*d* ~ V(x* +d*) - g" ~ —(g"" —g"):
(x ¥ - 7434 %) - ‘
or for some s I gz/ e %%()
{"& &\ U L 1k 1 " N y
I and Hd"” ~ —(V(x" + ed”) — g").

—
( \ , 2 L 3 ~3 2
LA x-S0 LU xR b\l]

\ A P | ~Z

Application in Federaied-LearnT . — D¥ 2 bc¥3
/‘é(l ALl = [ A (A%-Db)

18
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The Accelerated Steepest Descent Method (ASDM) I

There is an accelerated steepest descent method (Nesterov 83)/that works as follows:

L+ 1+H4(AF)2 0 1"

0 __ k4+1 __
)\ —O,)\ - 2 704 )\k+17

(12)

1
Pl = xF — SV f(xF), X = (1 — o)X+ of P (13)

Note that (A%)2 = M\ — 1) AF > k/2 and o < 0.

One can prove:

Theorem 4 C%D
. . 203
FE) = f(x) < S5l —xP vk > 1 =

/v—\ ————”

19
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Convergence Analysis of ASDM I

Again for simplification, we let A* = \fx? — (\F — 1)xF — x*, gF = V f(x") and
0% = f(x") = f(x*)(= 0) in the following.

Applying Lemma 1 for x = Xx*t1 andy = %

* convexity of f and (13) we have

P 5 = FERM) = F() + F) — F(&Y)

— X
ik—i—l _ Xk 2 _ 5(}2k+1 _ Xk)T(Xk _ ik)

< _g xk+1 _ k|2 + f(Xk) o f(f(k) 4
< GRS =) 4 ()T - X

B

2

Applying Lemma 1 for X = xF*1 and y = X", convexity of f and (13) we have

FEM) = f(xF) + f(x*) = f(x7)

5k+1

< _g ik—l—l B Xk 2 + f(Xk) o f(X*) s)
< _g xk+1 _ k|2 4 (gk)T(Xk o X*)
_ _g xk+1 k2 _ B(ik—l—l - Xk)T(Xk o X*).

20
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Multiplying (14) by A\¥(\* — 1) and (15) by \* respectively, and summing the two, we have
(AF)26R+1 — (\k=1)25k < _()\k)2§”}~<kz+1 CxF|2 = AFB(RRHT — xB)T AR
_g(()\k)2H}~<k+1 — xR |2 4 2NF (&R - xE)T AR)
BN — (A = 1)k — x| — [ AF|2)
= S(AR? = AFRFF - (M — DRF —x7).
Using (12) and (13) we can derive
Neh L Ak 1)k = ALkl (kL gkl
Thus,
(AF)2akH+L _ (\k=1y25k < g(HAkW _|ARFL2) (16)

Sum up (16) from 1 to k£ we have

20
5k—|—1 < 6 Al 2 < 27 AO 2
< 2()\k)2|‘ I = = [1A7]

since \* > k/2and [|AL|| < [|A?].
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