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First-Order Algorithm: the Steepest Descent Method (SDM)

Let f be a differentiable function and assume we can compute gradient (column) vector∇f . We want to

solve the unconstrained minimization problem

min
x∈Rn

f(x).

In the absence of further information, we seek a first-order KKT or stationary point of f , that is, a point x∗

at which∇f(x∗) = 0. Here we choose direction vector dk = −∇f(xk) as the search direction at xk,

which is the direction of steepest descent.

The number αk ≥ 0, called step-size, is chosen “appropriately” as

αk ∈ arg minf(xk − α∇f(xk)).

Then the new iterate is defined as xk+1 = xk − αk∇f(xk).

In some implementations, step-size αk is fixed through out the process – independent of iteration count k
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SDM Example: Unconstrained Quadratic Optimization

Let f(x) = 1
2x

TQx+ cTx where Q ∈ Rn×n is symmetric and positive definite. This implies that the

eigenvalues of Q are all positive. The unique minimum x∗ of f(x) exists and is given by the solution of

the system of linear equations

∇f(x)T = Qx+ c = 0,

or equivalently

Qx = −c.

The iterative scheme becomes, from dk = −(Qxk + c),

xk+1 = xk + αkdk = xk − αk(Qxk + c).

To compute the step size, αk, we consider

f(xk + αdk)

= cT (xk + αdk) + 1
2 (x

k + αdk)TQ(xk + αdk)

= cTxk + αcTdk + 1
2 (x

k)TQxk + α(xk)TQdk + 1
2α

2(dk)TQdk
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which is a strictly convex quadratic function of α. Its minimizer αk is the unique value of α where the

derivative f ′(xk + αdk) vanishes, i.e., where

cTdk + (xk)TQdk + α(dk)TQdk = 0.

Thus

αk = −cTdk + (xk)TQdk

(dk)TQdk
=

∥dk∥2

(dk)TQdk
.

The recursion for the method of steepest descent now becomes

xk+1 = xk −
(
∥dk∥2

(dk)TQdk

)
dk.

Therefore, minimize a strictly convex quadratic function is equivalent to solve a system of equation with a

positive definite matrix. The former may be ideal if the system only needs to be solved approximately.
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Iterate Convergence of the Steepest Descent Method

The following theorem gives some conditions under which the steepest descent method will generate a

sequence of iterates that converge .

Theorem 1 Let f : Rn → R be given. For some given point x0 ∈ Rn, let the level set

X0 = {x ∈ Rn : f(x) ≤ f(x0)}

be bounded. Assume further that f is continuously differentiable on the convex hull of X0. Let {xk} be

the sequence of points generated by the steepest descent method initiated at x0. Then every

accumulation point of {xk} is a stationary point of f .

Proof: Note that the assumptions imply the compactness of X0. Since the iterates will all belong to X0,

the existence of at least one accumulation point of {xk} is guaranteed by the Bolzano-Weierstrass

Theorem. Let x̄ be such an accumulation point, and without losing generality, {xk} converge to x̄.

Assume∇f(x̄) ̸= 0. Then there exists a value ᾱ > 0 and a δ > 0 such that

f(x̄− ᾱ∇f(x̄)) + δ = f(x̄). This means that ȳ := x̄− ᾱ∇f(x̄) is an interior point of X0 and

f(ȳ) = f(x̄)− δ.
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For an arbitrary iterate of the sequence, say xk, the Mean-Value Theorem implies that we can write

f(xk − ᾱ∇f(xk)) = f(ȳ) + (∇f(yk))T
(
xk − ᾱ∇f(xk)− ȳ

)
where yk lies between xk − ᾱ∇f(xk) and ȳ. Then {yk} → ȳ and {∇f(yk)} → ∇f(ȳ) as

{xk} → x̄. Thus, for sufficiently large k,

f(xk − ᾱ∇f(xk)) ≤ f(ȳ) +
δ

2
= f(x̄)− δ

2
.

Since the sequence {f(xk)} is monotonically decreasing and converges to f(x̄), hence

f(x̄) < f(xk+1) = f(xk − αk∇f(xk)) ≤ f(xk − ᾱ∇f(xk)) ≤ f(x̄)− δ

2

which is a contradiction. Hence∇f(x̄) = 0.

Remark According to this theorem, the steepest descent method initiated at any point of the level set X0

will converge to a stationary point of f , which property is called global convergence.

This proof can be viewed as a special form of Theorem 1: the SDM algorithm mapping is closed and the

objective function is strictly decreasing if not optimal yet.
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Convergence Speed of the SDM for Strongly Convex QP

The convergence rate of the steepest descent method applied to convex quadratic functions is known to

be linear. Suppose Q is a symmetric positive definite matrix of order n and let its eigenvalues be

0 < λ1 ≤ · · · ≤ λn. Obviously, the global minimizer of the quadratic form f(x) = 1
2x

TQx is at the

origin.

It can be shown that when the steepest descent method is started from any nonzero point x0 ∈ Rn, there

will exist constants c1 and c2 such that (page 235, L&Y)

0 < c1 ≤
f(xk+1)

f(xk)
≤ c2 ≤

(
λn − λ1

λn + λ1

)2

< 1, k = 0, 1, . . . .

Intuitively, the slow rate of linear convergence of the steepest descent method can be attributed the fact

that the successive search directions are perpendicular.

Consider an arbitrary iterate xk. At this point we have the search direction dk = −∇f(xk). To find the

next iterate xk+1 we minimize f(xk − α∇f(xk)) with respect to α ≥ 0. At the minimum αk, the

derivative of this function will equal zero. Thus, we obtain∇f(xk+1)T∇f(xk) = 0.
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Convergence Speed of the SDM for Minimizing Lipschitz Functions

Let f(x) be differentiable every where and satisfy the (first-order) β-Lipschitz condition, that is, for any

two points x and y

∥∇f(x)−∇f(y)∥ ≤ β∥x− y∥ (1)

for a positive real constant β. Then, we have

Lemma 1 Let f be a β-Lipschitz function. Then for any two points x and y

f(x)− f(y)−∇f(y)T (x− y) ≤ β

2
∥x− y∥2. (2)

At the kth step of SDM, we have

f(x)− f(xk) ≤ ∇f(xk)T (x− xk) +
β

2
∥x− xk∥2.

The left hand strict convex quadratic function of x establishes a upper bound on the objective reduction.
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Let us minimize the quadratic function

xk+1 = argmin
x
∇f(xk)T (x− xk) +

β

2
∥x− xk∥2,

and let the minimizer be the next iterate. Then it has a close form:

xk+1 = xk − 1

β
∇f(xk)

which is the SDM with the fixed step-size 1
β . Then

f(xk+1)− f(xk) ≤ − 1

2β
∥∇f(xk)∥2, or f(xk)− f(xk+1) ≥ 1

2β
∥∇f(xk)∥2.

Then, after K(≥ 1) steps, we must have

f(x0)− f(xK) ≥ 1

2β

K−1∑
k=0

∥∇f(xk)∥2. (3)

Theorem 2 (Error Convergence Estimate Theorem) Let the objective function p∗ = inf f(x) be finite

and let us stop the SDM as soon as ∥∇f(xk)∥ ≤ ϵ for a given tolerance ϵ ∈ (0 1). Then the SDM
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terminates in 2β(f(x0)−p∗)
ϵ2 steps.

Proof: From (3), after K = 2β(f(x0)−p∗)
ϵ2 steps

f(x0)− p∗ ≥ f(x0)− f(xK) ≥ 1

2β

K−1∑
k=0

∥∇f(xk)∥2.

If ∥∇f(xk)∥ > ϵ for all k = 0, ...,K − 1, then we have

f(x0)− p∗ >
K

2β
ϵ2 ≥ f(x0)− p∗

which is a contradiction.

Corollary 1 If a minimizer x∗ of f is attainable, then the SDM terminates in β2∥x0−x∗∥2

ϵ2 steps.

The proof is based on Lemma 1 with x = x0 and y = x∗ and noting∇f(y) = ∇f(x∗) = 0:

f(x0)− p∗ = f(x0)− f(x∗) ≤ β

2
∥x0 − x∗∥2.
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The SDM for Unconstrained Convex Lipschitz Optimization

Here we consider f(x) being convex and differentiable everywhere and satisfying the (first-order)

β-Lipschitz condition. Given the knowledge β, we again adopt the fixed step-size rule:

xk+1 = xk − 1

β
∇f(xk). (4)

The following lemma is instrumental for establishing the global convergence rate of the Steepest Descent

Method in this case.

Lemma 2 It holds for all x and y ∈ Rn that

f(x)− f(y)− [∇f(x)]T (x− y) ≤ − 1

2β
∥∇f(x)−∇f(y)∥2. (5)

Proof: Fix an x ∈ Rn. Define F (y) = f(y) + [∇f(x)]T (x− y) for y ∈ Rn. Then (5) is equivalent

to F (x)− F (y) ≤ −∥∇F (y)∥2/(2β). This inequality holds because∇F is β-Lipschitz and F (x) is

the global minimum of F , as F is convex and∇F (x) = 0.

Theorem 3 For convex Lipschitz optimization the Steepest Descent Method generates a sequence of
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solutions such that

f(xk)− f(x∗) ≤ β

2(k + 1)
∥x0 − x∗∥2, (6)

min
0≤l≤k

∥∇f(xl)∥ ≤
√
2β√

(k + 1)(k + 2)
∥x0 − x∗∥, (7)

where we assume that x∗ is a minimizer of the problem.

Proof: According to Lemma 2, for the gradient method (4), we have

f(xk)− f(x∗) ≤ [∇f(xk)]T (xk − x∗)− 1
2β ∥∇f(x

k)∥2

= β(xk − xk+1)T (xk − x∗)− β
2 ∥x

k − xk+1∥2

= β
2 (x

k − xk+1)T (xk + xk+1)− 2x∗)

= β
2 (∥x

k − x∗∥2 − ∥xk+1 − x∗∥2).

(8)

On the other hand, as we have proved for general Lipschitz optimization case,

f(xk)− f(xk+1) ≥ 1

2β
∥∇f(xk)∥2. (9)
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Hence {f(xk)} is nonincreasing. Consequently,

k∑
l=0

[
f(xl)− f(x∗)

]
≥ (k + 1)

[
f(xk)− f(x∗)

]
,

which renders (6) together with (8). Meanwhile, inequality (7) follows from (8) and

k∑
l=0

[f(xl)− f(x∗)] ≥
k∑

l=0

k∑
i=l

[f(xi)− f(xi+1)]

≥ 1

4β
(k + 2)(k + 1) min

0≤l≤k
∥∇f(xl)∥2,

where the second inequality uses (9).

Remark When k = 0, inequalities (6) and (7) reduce to

f(x0)− f(x∗) ≤ β

2
∥x0 − x∗∥2 and ∥∇f(x0∥ ≤ β∥x0 − x∗∥,

which cannot be improved.
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Forward and Backward Tracking Step-Size Method

In most real applications, the Lipschitz constant β is unknown. Furthermore, we like to use the smallest

localized Lipschitz constant βk at iteration k such that

f(xk + αdk)− f(xk)−∇f(xk)T (αdk) ≤ βk

2
∥αdk∥2,

where dk = −∇f(xk), to decide the step-size α = 1
βk .

Consider the following step-size strategy: stat at a good step-size guess α > 0:

(1): If α ≤ 2(f(xk)−f(xk+αdk))
∥dk∥2 then doubling the step-size: α← 2α, stop as soon as the inequality is

reversed and select the latest α with α ≤ 2(f(xk)−f(xk+αdk))
∥dk∥2 ;

(2): Otherwise halving the step-size: α← α/2; stop as soon as α ≤ 2(f(xk)−f(xk+αdk))
∥dk∥2 and return it.

Prove that the selected step-size
1

2βk
≤ α ≤ 1

βk
.
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The Barzilai and Borwein Method

There is a steepest descent method (Barzilai and Borwein 88) that chooses the step-size as follows:

∆k
x = xk − xk−1 and ∆k

g = ∇f(xk)−∇f(xk−1), (10)

αk =
(∆k

x)
T∆k

g

(∆k
g)

T∆k
g

or αk =
(∆k

x)
T∆k

x

(∆k
x)

T∆k
g

,

Then

xk+1 = xk − αk∇f(xk). (11)

For convex quadratic minimization with Hessian Q, ∆k
g = Q∆k

x, the two step size formula become

αk =
(∆k

x)
TQ∆k

x

(∆k
x)

TQ2∆k
x

or αk =
(∆k

x)
T∆k

x

(∆k
x)

TQ∆k
x

and it is between the reciprocals of the largest and smallest non-zero eigenvalues of Q (Rayleigh

quotient).
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An Explanation why the BB Method Works

For convex quadratic minimization, let the distinct nonzero eigenvalues of Hessian Q be λ1, λ2, ..., λK ;

and let the step size in the SDM be αk = 1
λk

, k = 1, ...,K . Then, the SDM terminates in K iterations

from any starting point x0.

In the BB method, αk minimizes

∥∆k
x − α∆k

g∥ = ∥∆k
x − αQ∆k

x∥.

If the error becomes 0 plus ∥∆k
x∥ ≠ 0, 1

αk will be a nonzero eigenvalue of Q – this is learning via

Rayleigh quotient.

Another interpretation: one-dimensional Newton - (the second choice of) αk minimizes the quadratic

(approximate) objective function along the negative-gradient direction at step k − 1.

On the other hand, many questions remain open for the BB method.
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Double-Directions: The QP Heavy-Ball Method (Polyak 64)

xk+1 = xk − 4

(
√
λn +

√
λ1)2
∇f(xk) +

( √
λn −

√
λ1√

λn +
√
λ1)

)
(xk − xk−1).

where the convergence rate can be improved to(√
λn −

√
λ1√

λn +
√
λ1

)2

.

This is also called the Parallel-Tangent or Conjugate Direction method, where the second direction-term in

the formula is nowadays called “acceleration” or“momentum” direction.

For minimizing general convex functions, we can let

xk+1 = xk − αg∇f(xk) + αm(xk − xk−1) = xk + d(αg, αm),

where the pair of step-sizes (αg, αm) can be chosen to

min
(αg,αd)

∇f(xk)d(αg, αm) +
1

2
d(αg, αm)∇2f(xk)d(αg, αm),

where x1 can be computed from the SDM step.
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DRSOM: The Close-Form Step-Size from Quadratic Approximation

Let dk = xk − xk−1, gk = ∇f(xk) and Hk = ∇2f(xk), then the step-sizes can be chosen from (gk)THkgk −(dk)THkgk

−(dk)THkgk (dk)THkdk

 αg

αm

 =

 ∥gk∥2

−(gk)Tdk

 .

If the Hessian∇2f(xk) is not available, one can approximate

Hkgk ∼ ∇(xk + gk)− gk and Hkdk ∼ ∇(xk + dk)− gk ∼ −(gk−1 − gk);

or for some small ϵ > 0:

Hkgk ∼ 1

ϵ
(∇(xk + ϵgk)− gk) and Hkdk ∼ 1

ϵ
(∇(xk + ϵdk)− gk).

Application in Federated-Learning.
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The Accelerated Steepest Descent Method (ASDM)

There is an accelerated steepest descent method (Nesterov 83) that works as follows:

λ0 = 0, λk+1 =
1 +

√
1 + 4(λk)2

2
, αk =

1− λk

λk+1
, (12)

x̃k+1 = xk − 1

β
∇f(xk), xk+1 = (1− αk)x̃k+1 + αkx̃k. (13)

Note that (λk)2 = λk+1(λk+1 − 1), λk > k/2 and αk ≤ 0.

One can prove:

Theorem 4

f(x̃k+1)− f(x∗) ≤ 2β

k2
∥x0 − x∗∥2, ∀k ≥ 1.
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Convergence Analysis of ASDM

Again for simplification, we let ∆k = λkxk − (λk − 1)x̃k − x∗, gk = ∇f(xk) and

δk = f(x̃k)− f(x∗)(≥ 0) in the following.

Applying Lemma 1 for x = x̃k+1 and y = x̃k, convexity of f and (13) we have

δk+1 − δk = f(x̃k+1)− f(xk) + f(xk)− f(x̃k)

≤ −β
2 ∥x̃

k+1 − xk∥2 + f(xk)− f(x̃k)

≤ −β
2 ∥x̃

k+1 − xk∥2 + (gk)T (xk − x̃k)

= −β
2 ∥x̃

k+1 − xk∥2 − β(x̃k+1 − xk)T (xk − x̃k).

(14)

Applying Lemma 1 for x = x̃k+1 and y = x∗, convexity of f and (13) we have

δk+1 = f(x̃k+1)− f(xk) + f(xk)− f(x∗)

≤ −β
2 ∥x̃

k+1 − xk∥2 + f(xk)− f(x∗)

≤ −β
2 ∥x̃

k+1 − xk∥2 + (gk)T (xk − x∗)

= −β
2 ∥x̃

k+1 − xk∥2 − β(x̃k+1 − xk)T (xk − x∗).

(15)
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Multiplying (14) by λk(λk − 1) and (15) by λk respectively, and summing the two, we have

(λk)2δk+1 − (λk−1)2δk ≤ −(λk)2 β
2 ∥x̃

k+1 − xk∥2 − λkβ(x̃k+1 − xk)T∆k

= −β
2 ((λ

k)2∥x̃k+1 − xk∥2 + 2λk(x̃k+1 − xk)T∆k)

= −β
2 (∥λ

kx̃k+1 − (λk − 1)x̃k − x∗∥2 − ∥∆k∥2)
= β

2 (∥∆
k∥2 − ∥λkx̃k+1 − (λk − 1)x̃k − x∗∥2).

Using (12) and (13) we can derive

λkx̃k+1 − (λk − 1)x̃k = λk+1xk+1 − (λk+1 − 1)x̃k+1.

Thus,

(λk)2δk+1 − (λk−1)2δk ≤ β

2
(∥∆k∥2 − ∥∆k+1∥2.) (16)

Sum up (16) from 1 to k we have

δk+1 ≤ β

2(λk)2
∥∆1∥2 ≤ 2β

k2
∥∆0∥2

since λk ≥ k/2 and ∥∆1∥ ≤ ∥∆0∥.
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