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Unstructured Optimization

Now consider the general (constrained) optimization (GCO) problem:

(P) minimize f(x)

subject to ci(x) (≤, =≥) 0 i = 1, ...,m

Optimality Conditions help to identify and verify when a solution is optimal.
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First-Order Necessary Conditions for Constrained Optimization I

Consider constraints {x : h(x) = 0, c(x) ≥ 0.}

Lemma 1 Let x̄ be a feasible solution and a regular point of the hypersurface of

{x : h(x) = 0, ci(x) = 0, i ∈ Ax̄}

where active-constraint set Ax̄ = {i : ci(x̄) = 0}. If x̄ is a (local) minimizer of (GCO), then there must

be no d to satisfy linear constraints:

∇f(x̄)d < 0

∇h(x̄)d = 0 ∈ Rm,

∇ci(x̄)d ≥ 0, ∀i ∈ Ax̄.

(1)

This lemma was proved when constraints are linear in which case d is a feasible direction, but needs more

work otherwise since there is no feasible direction when constraints are nonlinear.

x̄ being a regular point is often referred as a Constraint Qualification condition.
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First-Order Necessary Conditions for Constrained Optimization II

Theorem 1 (First-Order or KKT Optimality Condition) Let x̄ be a (local) minimizer of (GCO) and it is a

regular point of {x : h(x) = 0, ci(x) = 0, i ∈ Ax̄}. Then, for some multipliers (ȳ, s̄ ≥ 0)

∇f(x̄) = ȳT∇h(x̄) + s̄T∇c(x̄) (2)

and (complementarity slackness)

s̄ici(x̄) = 0, ∀i.

The proof is again based on the Alternative System Theory or Farkas Lemma. The complementarity

slackness condition is from that ci(x̄) = 0 for all i ∈ Ax̄, and for i ̸∈ Ax̄, we simply set s̄i = 0.

A solution who satisfies these conditions is called an KKT point or solution of (GCO) – any local minimizer

x̄, if it is also a regular point, must be an KKT solution; but the reverse may not be true.
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Constraint Qualification and the KKT Theorem

One condition for a local minimizer x̄ that must always be an KKT solution is the constraint qualification: x̄

is a regular point of the constraints. Otherwise, a local minimizer may not be an KKT solution: Consider

x̄ = (0; 0) of a convex nonlinearly-constrained problem

min x1, s.t. x2
1 + (x2 − 1)2 − 1 ≤ 0, x2

1 + (x2 + 1)2 − 1 ≤ 0}.

On the other hand, even the regular point condition does not hold, the KKT theorem may still true:

min x2, s.t. x2
1 + (x2 − 1)2 − 1 ≤ 0, x2

1 + (x2 + 1)2 − 1 ≤ 0},

that is, x̄ = (0; 0) is an KKT solution of the latter problem.

Therefore, finding an KKT solution is a plausible way to find a local minimizer.
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KKT via the Lagrangian Function

It is more convenient to introduce the Lagrangian Function associated with generally constrained

optimization:

L(x,y, s) = f(x)− yTh(x)− sT c(x),

where multipliers y of the equality constraints are “free” and s ≥ 0 for the “greater or equal to” inequality

constraints, so that the KKT condition (2) can be written as

∇xL(x̄, ȳ, s̄) = 0.

Lagrangian Function can be viewed as a “penalty” function aggregated with the original objective function

plus the penalized terms on constraint violations.

In theory, one can adjust the penalty multipliers (y, s ≥ 0) to repeatedly solve the following so-called

Lagrangian Relaxation Problem:

(LRP ) minx L(x,y, s).
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Summary of KKT Conditions for More General GCO

(GCO)
min f(x)

s.t. ci(x) (≤,=,≥) 0, i = 1, ...,m, (Original Problem Constraints (OPC))

the Lagrangian Function is given by

L(x,y) = f(x)− yT c(x) = f(x)−
m∑
i=1

yici(x).

For any feasible point x of (GCO) define the active constraint set by Ax = {i : ci(x) = 0}. Let x̄ be a

local minimizer for (GCO) and x̄ is a regular point on the hypersurface of the active constraints Then there

exist multipliers ȳ such that

∇f(x̄) = ȳT∇c(x̄) (Lagrangian Derivative Conditions (LDC))

ȳi (≤,′ free′,≥) 0, i = 1, ...,m, (Multiplier Sign Constraints (MSC))

ȳici(x̄) = 0, (Complementarity Slackness Conditions (CSC)).
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Second-Order Necessary Conditions for Constrained Optimization

Now in addition we assume all functions are in C2, that is, twice continuously differentiable. Recall the

tangent linear sub-space at x̄:

Tx̄ := {z : ∇h(x̄)z = 0, ∇ci(x̄)z = 0 ∀i ∈ Ax̄}.

Theorem 2 Let x̄ be a (local) minimizer of (GCO) and a regular point of hypersurface

{x : h(x) = 0, ci(x) = 0, i ∈ Ax̄}, and let ȳ, s̄ denote Lagrange multipliers such that (x̄, ȳ, s̄)

satisfies the (first-order) KKT conditions of (GCO). Then, it is necessary to have

dT ∇2
xL(x̄, ȳ, s̄)d ≥ 0 ∀ d ∈ Tx̄.

The Hessian of the Lagrangian function need to be positive semidefinite on the tangent-space.
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Second-Order Sufficient Conditions for GCO

Theorem 3 Let x̄ be a regular point of (GCO) with equality constraints only and let ȳ be the Lagrange

multipliers such that (x̄, ȳ) satisfies the (first-order) KKT conditions of (GCO). Then, if in addition

dT ∇2
xL(x̄, ȳ)d > 0 ∀ 0 ̸= d ∈ Tx̄,

then x̄ is a local minimizer of (GCO).

See the proof in Chapter 11.5 of LY.

The SOSC for general (GCO) is proved in Chapter 11.8 of LY.
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min (x1)
2 + (x2)

2 s.t. (x1)
2/4 + (x2)

2 − 1 = 0
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v

Figure 1: FONC and SONC for Constrained Minimization

10



MS&E314: Optimization in ML&DS Lecture Note #05

KKT Conditions: Fisher’s Equilibrium Price

Player i ∈ B’s optimization problem for given prices pj , j ∈ G.

maximize uT
i xi :=

∑
j∈G uijxij

subject to pTxi :=
∑

j∈G pjxij ≤ wi,

xij ≥ 0, ∀j,

Assume that the amount of each good is s̄j . The equilinitum price vector is the one that for all j ∈ G∑
i∈B

x(p)ij = s̄j
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Example of Fisher’s Equilibrium Price

There two goods, x and y, each with 1 unit on the market. Buyer 1, 2’s optimization problems for given

prices px, py .

maximize 2x1 + y1

subject to px · x1 + py · y1 ≤ 5,

x1, y1 ≥ 0;

maximize 3x2 + y2

subject to px · x2 + py · y2 ≤ 8,

x2, y2 ≥ 0.

px =
26

3
, py =

13

3
, x1 =

1

13
, y1 = 1, x2 =

12

13
, y2 = 0
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Equilibrium Price Conditions

Player i ∈ B’s dual problem for given prices pj , j ∈ G.

minimize wiyi

subject to pyi ≥ ui, yi ≥ 0

The necessary and sufficient conditions for an equilibrium point xi,p are:

pTxi = wi, xi ≥ 0, ∀i,
pjyi ≥ uij , yi ≥ 0, ∀i, j,

uT
i xi = wiyi, ∀i,∑
i xij = s̄j , ∀j.

<=>

pTxi = wi, xi ≥ 0, ∀i,
pj ≥ wi

uij

uT
i
xi
, ∀i, j,∑

i xij = s̄j , ∀j.
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Equilibrium Price Conditions (continued)

These conditions can be equivalently represented by∑
j s̄jpj ≤

∑
i wi, xi ≥ 0, ∀i,

pj ≥ wi
uij

uT
i
xi
, ∀i, j,∑

i xij = s̄j , ∀j.

since from the second inequality (after multiplying xij to both sides and take sum over j) we have

pTxi ≥ wi, ∀i.

Then, from the rest conditions∑
i

wi ≥
∑
j

s̄jpj =
∑
i

pTxi ≥
∑
i

wi.

Thus, every inequality in the sequel has to be equal, that is, pTxi = wi, ∀i and

pjxij = wi
uijxij

uT
i
xi

, ∀i, j .
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Equilibrium Price Property

If uij has at least one positive coefficient for every j, then we must have pj > 0 for every j at every

equilibrium. Moreover, The second inequality can be rewritten as

log(uT
i xi) + log(pj) ≥ log(wi) + log(uij), ∀i, j, uij > 0.

The function on the left is (strictly) concave in xi and pj . Thus,

Theorem 4 The equilibrium set of the Fisher Market is convex, and the equilibrium price vector is unique.
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Aggregate Social Optimization

maximize
∑

i∈B wi log(u
T
i xi)

subject to
∑

i∈B xij = s̄j , ∀j ∈ G, xij ≥ 0, ∀i, j.

Theorem 5 (Eisenberg and Gale 1959) Optimal dual (Lagrange) multiplier vector of equality constraints is

an equilibrium price vector.

The proof is from Optimality Conditions of the Aggregate Social Problem:

wi
uij

uT
i
xi

≤ pj , ∀i, j

wi
uijxij

uT
i
xi

= pjxij , ∀i, j (complementarity)∑
i xij = s̄j , ∀j
xi ≥ 0, ∀i,

which is identical to the equilibrium conditions described earlier.
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Rewrite Aggregate Social Optimization

maximize
∑

i∈B wi log ui

subject to
∑

j∈G uT
ijxij − ui = 0, ∀i ∈ B∑

i∈B xij = s̄j , ∀j ∈ G

xij ≥ 0, ui ≥ 0, ∀i, j,
This is called the weighted analytic center problem.

Question: Is the price vector p unique when at least one uij > 0 among i ∈ B and uij > 0 among

j ∈ G.

Aggregate Example:

maximize 5 log(2x1 + y1) + 8 log(3x2 + y2)

subject to x1 + x2 = 1,

y1 + y2 = 1,

x1, x2, y1, y2 ≥ 0.
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Lagrangian Function and Dual

Consider the general constrained optimization again:

(GCO)
min f(x)

s.t. ci(x) (≤,=,≥) 0, i = 1, ...,m,

For Lagrange Multipliers.

Y := {yi (≤,′ free′,≥) 0, i = 1, ...,m},

the Lagrangian Function is again given by

L(x,y) = f(x)− yT c(x) = f(x)−
m∑
i=1

yici(x), y ∈ Y.

We now develop the Lagrangian Duality theory as an alternative to Conic Duality theory. For general

nonlinear constraints, the Lagrangian Duality theory is more applicable.
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Toy Example Again

minimize (x1 − 1)2 + (x2 − 1)2

subject to x1 + 2x2 − 1 ≤ 0,

2x1 + x2 − 1 ≤ 0.

L(x,y) = f(x)− yT c(x) = f(x)−
2∑

i=1

yici(x) =

= (x1 − 1)2 + (x2 − 1)2 − y1(x1 + 2x2 − 1)− y2(2x1 + x2 − 1), (y1; y2) ≤ 0

where

∇Lx(x,y) =

 2(x1 − 1)− y1 − 2y2

2(x2 − 1)− 2y1 − y2
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Lagrangian Relaxation Problem

For given multipliers y ∈ Y , consider problem

(LRP ) inf L(x,y) = f(x)− yT c(x)

s.t. x ∈ Rn.

Again, yi can be viewed as a penalty parameter to penalize constraint violation ci(x), i = 1, ...,m.

In the toy example, for given (y1; y2) ≤ 0, the LRP is:

inf (x1 − 1)2 + (x2 − 1)2 − y1(x1 + 2x2 − 1)− y2(2x1 + x2 − 1)

s.t. (x1;x2) ∈ R2,

and it has a close form solution x for any given y:

x1 =
y1 + 2y2

2
+ 1 and x2 =

2y1 + y2
2

+ 1

with the minimal or infimum value function = −1.25y21 − 1.25y22 − 2y1y2 − 2y1 − 2y2.
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Inf-Value Function as the Dual Objective

For any y ∈ Y , the minimal value function (including unbounded from below or infeasible cases) and the

Lagrangian Dual Problem (LDP) are given by:
ϕ(y) := infx L(x,y), s.t. x ∈ Rn.

(LDP ) supy ϕ(y), s.t. y ∈ Y.

Theorem 6 The Lagrangian dual objective ϕ(y) is a concave function.

Proof: For any given two multiply vectors y1 ∈ Y and y2 ∈ Y ,

ϕ(αy1 + (1− α)y2) = infx L(x, αy
1 + (1− α)y2)

= infx[f(x)− (αy1 + (1− α)y2)T c(x)]

= infx[αf(x) + (1− α)f(x)− α(y1)T c(x)− (1− α)(y2)T c(x)]

= infx[αL(x,y
1) + (1− α)L(x,y2)]

≥ α[infx L(x,y
1)] + (1− α)[infx L(x,y

2)]

= αϕ(y1) + (1− α)ϕ(y2),
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Dual Objective Establishes a Lower Bound

Theorem 7 (Weak duality theorem) For every y ∈ Y , the Lagrangian dual function ϕ(y) is less or equal

to the infimum value of the original GCO problem.

Proof:

ϕ(y) = infx {f(x)− yT c(x)}
≤ infx {f(x)− yT c(x) s.t. c(x)(≤,=,≥)0 }
≤ infx {f(x) : s.t. c(x)(≤,=,≥)0 }.

The first inequality is from the fact that the unconstrained inf-value is no greater than the constrained one.

The second inequality is from c(x)(≤,=,≥)0 and y(≤,′ free′,≥)0 imply −yT c(x) ≤ 0.
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The Lagrangian Dual of Classical LP I

Consider LP problem

(LP ) minimize cTx

subject to Ax = b, x ≥ 0;

and its conic dual problem is given by

(LD) maximize bTy

subject to ATy + s = c, s ≥ 0.

We now derive the Lagrangian Dual of (LP). Let the Lagrangian multipliers be y(′free′) for equalities and

s ≥ 0 for constraints x ≥ 0. Then the Lagrangian function would be

L(x,y, s) = cTx− yT (Ax− b)− sTx = (c−ATy − s)Tx+ bTy;

where x is “free”.
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The Lagrangian Dual of Classical LP II

Now consider the Lagrangian dual objective

ϕ(y, s) = inf
x∈Rn

L(x,y, s) = inf
x∈Rn

[
(c−ATy − s)Tx+ bTy

]
.

If (c−ATy− s) ̸= 0, then ϕ(y, s) = −∞. Thus, in order to maximize ϕ(y, s), the dual must choose

its variables (y, s ≥ 0) such that (c−ATy − s) = 0.

This constraint, together with the sign constraint s ≥ 0, establish the Lagrangian dual problem:

(LDP ) maximize bTy

subject to ATy + s = c, s ≥ 0.

which is consistent with the conic dual of LP.
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Lagrangian Strong Duality Theorem

Theorem 8 Let (GCO) be a convex minimization problem and the infimum f∗ of (GCO) be finite, and the

suprermum of (LDP) be ϕ∗. In addition, let (GCO) have an interior-point feasible solution with respect to

inequality constraints, that is, there is x̂ such that all inequality constraints are strictly held. Then,

f∗ = ϕ∗, and (LDP) admits a maximizer y∗ such that

ϕ(y∗) = f∗.

Furthermore, if (GCO) admits a minimizer x∗, then

y∗i ci(x
∗) = 0, ∀i = 1, ...,m.

The assumption of “interior-point feasible solution” is called Constraint Qualification condition, which was

also needed as a condition to prove the strong duality theorem for general Conic Linear Optimization.

Note that the problem would be a convex minimization problem if all equality constraints are hyperplane or

affine functions ci(x) = aix− bi, all other level sets are convex.
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More on Lagrangian Duality

Consider the constrained problem with additional constraints

(GCO) inf f(x)

s.t. ci(x) (≤,=,≥) 0, i = 1, ...,m,

x ∈ Ω ⊂ Rn.

Typically, Ω has a simple form such as the cone

Ω = Rn
+ = {x : x ≥ 0}

or the box

Ω := {x : −e ≤ x ≤ e.}

Then, when derive the Lagrangian dual, there is not need to introduce multipliers for Ω constraints.

26



MS&E314: Optimization in ML&DS Lecture Note #05

Lagrangian Relaxation Problem

Consider again the (partial) Lagrangian Function:

L(x,y) = f(x)− yT c(x), y ∈ Y ;

and define the dual objective function of y be

ϕ(y) := infx L(x,y)

s.t. x ∈ Ω.

Theorem 9 The Lagrangian dual function ϕ(y) is a concave function.

Theorem 10 (Weak duality theorem) For every y ∈ Y , the Lagrangian dual function value ϕ(y) is less or

equal to the infimum value of the original GCO problem.
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The Lagrangian Dual Problem

(LDP ) sup ϕ(y)

s.t. y ∈ Y.

would called the Lagrangian dual of the original GCO problem:

Theorem 11 (Strong duality theorem) Let (GCO) be a convex minimization problem, the infimum f∗ of

(GCO) be finite, and the suprermum of (LDP) be ϕ∗. In addition, let (GCO) have an interior-point feasible

solution with respect to inequality constraints, that is, there is x̂ such that all inequality constraints are

strictly held. Then, f∗ = ϕ∗, and (LDP) admits a maximizer y∗ such that

ϕ(y∗) = f∗.

Furthermore, if (GCO) admits a minimizer x∗, then

y∗i ci(x
∗) = 0, ∀i = 1, ...,m.
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Rules to Construct the Lagrangian Dual

(GCO)
min f(x)

s.t. cix) (≤,=,≥) 0, i = 1, ...,m,

• All multipliers are dual variables.

• Derive the LDC

∇f(x) = yT∇c(x)

If no x appeared in an equation, set it as an equality constraint for the dual; otherwise, express x in

terms of y and replace x in the Lagrange function, which becomes the Dual objective. (This may be

very difficult ...)

• Add the MSC as dual constraints.
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The Conic Duality vs. Lagrangian Duality I

Consider SOCP problem

(SOCP ) minimize cTx

subject to Ax = b, x1 − ∥x−1∥2 ≥ 0;

and it conic dual problem

(SOCD) maximize bTy

subject to ATy + s = c, s1 − ∥s−1∥2 ≥ 0.

Let the Lagrangian multipliers be y for equalities and scalar s ≥ 0 for the single constraint

x1 ≥ ∥x−1∥2. Then the Lagrangian function would be

L(x,y, s) = cTx−yT (Ax−b)− s(x1−∥x−1∥2) = (c−ATy)Tx− s(x1−∥x−1∥2)+bTy.
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The Conic Duality vs. Lagrangian Duality II

Now consider the Lagrangian dual objective

ϕ(y, s) = inf
x∈Rn

L(x,y, s) = inf
x∈Rn

[
(c−ATy)Tx− s(x1 − ∥x−1∥2) + bTy

]
.

The objective function of the problem may not be differentiable so that the classical optimal condition

theory do not apply. Consequently, it is difficult to write a clean/explicit form of the Lagrangian dual

problem.

On the other hand, many nonlinear optimization problems, even they are convex, are difficult to transform

them into structured CLP problems (especially to construct the dual cones). Therefore, each of the duality

form, Conic or Lagrangian, has its own pros and cons.
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