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Conic Linear Programming 

Yinyu Ye,  Stanford, MS&E211 Lecture Notes #15 2

0                  

,  s.t.           

  min   (LP)



=

x

bAx

xcT

Cx

bAx

xcT



=

                    

,  s.t.             

  min  (CLP)

C: a convex and self-dual pointed cone



CLP Examples 
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Dual of Conic Linear Programming 
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Theorem 1  (Weak duality theorem) Let both primal 

feasible region Fp and dual feasible region Fd be non-

empty. Then, cT x ≥ bT y for all  x ∈ Fp, y ∈ Fd.

This theorem shows that a feasible solution to either problem yields a 

bound or certificate on the value of the other problem. We again call it 

the duality gap. Note that the standard KKT condition may fail to 

establish such certification
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Duality Theorems

Theorem 2  (Strong duality theorem) Let both primal 

feasible region Fp and dual feasible region Fd be non-

empty and have interior. Then, x∗∈ Fp is optimal for (CLP) 

and y∗ ∈ Fd is optimal for (CLD) if and only if the duality 

gap cT x∗ − bT y∗ = 0.



CLP Primal-Dual Combinations 
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(SDP)min 𝑥1
s.t. 𝑥2 = 1,

𝑥1 𝑥2
𝑥2 𝑥3

is PSD

(SCD) max 𝑦
s.t. 𝑟1 = 1,

y + 𝑟2 = 0,
𝑟3 = 0,

𝑟1 𝑟2
𝑟2 𝑟3

is PSD

Primal   
Dual
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Only in 
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Optimization



Facility Location and its Conic Formulation 

Yij Yjj
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Find the facility location that is “close” to the client locations.

The optimal dual multipliers can be interpreted as force on 
the edges.

miny ∑i 𝒂𝑖 − 𝒚 , 𝑜𝑟
miny 𝑚𝑎𝑥i { 𝒂𝑖 − 𝒚 }.

minwi,,y ∑i 𝑤i
s.t. 𝒂𝑖 − 𝒚 −𝒘𝑖 ≤ 𝟎, 𝑖 = 1,… , 𝑘 𝑜𝑟

minw,y 𝑤
s.t. 𝒂𝑖 − 𝒚 −𝒘 ≤ 𝟎, 𝑖 = 1,… , 𝑘

(w; ai -y ) ∈ 𝑺𝑶𝑪, 𝑖 = 1,… , 𝑘

The constraints 
can be written 
in conic format.



Given a graph G = (V, E) and sets of partial distance 
measurements, say {dij  : (i, j) ∈ E} , the goal is to compute 
a realization of G in the Euclidean space Rd for a given low 
dimension d, i.e.

•to place the nodes/vertices of G in Rd such that

•the Euclidean distance between every pair of adjacent 

vertices     (i, j) ∈ E equals the measurements dij  ∈ E.

In general the localization may not be fixed since the 
configuration can rotate and translate. Thus, we assume 
that the positions of  (d+1) sensors are known, and they 
called anchors.

This problem has wide applications …

Sensor Network Localization Statement 
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This is a system of quadratic equations (after square both sides) and 

nonconvex, in contrast to a system of linear equations. 

Does the system have a solution/localization of all xj ’s? Is the 

solution/localization unique? Is there a certification for a solution to 

make it reliable or trustworthy? Is the system partially localizable with 

certification? 

To get something more tractable, we can consider convex relaxations.
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Sensor Network Localization Formulation 
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Find d-dimensional points/vectors xj , j=1,2,…,n+d+1, such that



This is to find a feasible solution for an SOCP problem and it is a 

convex feasibility problem, called SOCP relaxation.
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SOCP Relaxation 
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An important and interesting question is: when is the relaxation exact? 
Answer: when the target point is inside the convex hull of anchors.
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The problem can be written as follows:

{ak} are the positions of “anchors”.

Step 1: Linearize

SDP Relaxation I 

Yij Yjj

Yjj
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Step 2: Tighten from relation of Y and X=[x1 x2 … xn]:

Step 3: Use linear algebra trick and put things together:

SDP Relaxation II 

Yij Yjj
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where ei is the unit vector of zeros everywhere but 1 for the ith entry.

This is an instance of semidefinite programming (SDP) and it is convex.
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SDP Relaxation III 

Yij Yjj
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An important and interesting question is: when is the 
relaxation exact?
Answer: The relaxation is exact iff the input data satisfies a 
uniqueness property called Universal d-Rigidity: The input has 
a unique realization in Rd, and does not have any non-trivial 
realization in Rh for h>d.
E.g., SDP is always exact with one target and three anchors in 
R2.

The optimal dual multipliers can be interpreted as tension on 
the edges.
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SDP Relaxation IV 

SDP: When the distance measurements have noise, one can develop 

an SDP relaxation to minimize an error function in the form

Interior-Point Algorithms have been extended for SDP using the 

barrier function regularization: –log(det(Z)) 

min 𝐶 • 𝑍
s.t. 𝐴𝑖𝑗 • 𝑍 = (𝑑𝑖𝑗)

2, (𝑖, 𝑗) ∈ 𝐸,

𝑍 ≽ 0

min 𝐶 • 𝑍 − μ log(det 𝑍 )
s.t. 𝐴𝑖𝑗 • 𝑍 = (𝑑𝑖𝑗)

2, (𝑖, 𝑗) ∈ 𝐸



Algorithm/Method: facts of optimization

An optimization problem falls in one of three cases:

• Problem is infeasible: Feasible region is empty.

• Problem is unbounded: Feasible region is non-empty and the 
objective value is unbounded.

• Problem is feasible and bounded.

When the problem is feasible and bounded,

• There may be an optimal solution or it may not attainable 

– min  e-x, s.t. x ≥ 0

• Optimal point may be unique or not (alternative optima)

• Optimal point may be on the boundary or inside of the feasible 
region.
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Starting with a feasible solution xk , we consider an iterative 

scheme of the form

xk+1  = xk + αk d
k

where dk is a search direction vector, both feasible and descent, 
and scalar αk is again the step-size.

In fact, once the search direction is chosen, the objective function 

can be written as f(xk + α dk), which is just function of α . Thus one 

can choose step-size α as αk according to some line (one-variable 

optimization) search to minimize the function WHILE keep 

xk + αk d
k feasible.

General Feasible-Descent Direction Methods
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The Optimization Algorithms/Methods
• Univariate Optimization Problem:

– The Bisection (first-order) method for finding a root the derivative function of 
a univariate problem

– The Golden-Section (zero-order) method for finding a minimizer of unimodal 
function of one variable

• Unconstrained Multivariate Optimization Problem (UCOP):
– The Gradient or Steepest Descent (SDM, first-order) method

• It converges as long as the level set of the function is bounded. The 
converges speed depends on the shape of the level set and the starting 
point.

– The Newton method (second-order, also applicable for equality constrained 
optimization (ECOP))
• It may not converge if the starting point is far from the root point, but 

super fast if it is “close” to the target.

• General Constrained Multivariate Optimization Problem (GCOP):
– The Reduced-Gradient Method (RGM): Simplex Method for LP
– The Gradient-Projection Methods (first-order, for linear equality or 

nonnegative constraints)
– The “Path-Following” Methods (sequential Newton, second-order)
– The Augmented Lagrangian and ADMM methods for constrained optimization
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Summary of the Methods for UCOP 
1. Take an initial point x0.  Set k = 0.
2. Evaluate f (xk).  If |f (xk)|   where  is a 

given tolerance, stop.

3. Update xk+1 = xk + αkd
k.

set k=k+1 and go to 2. 

* SDM:       dk =- f (xk)  (works globally, but slow)
Newton: dk =- 2f(xk)-1f(xk) (works locally, but fast)
Quasi-Newton: dk =-Qf(xk)   (combined)

where Qk is a PD matrix
** Fix a step-size αk according to the Lipchitz 
constant or use the variable step-size such as one-
dimension search to find αk that minimizes 

(α)=f (xk + αdk).
18Yinyu Ye,  Stanford, MS&E211 Lecture Notes #15



The SDM chooses dk  = −∇ f (xk ) as the search direction at each step 

and selects step-size αk  = arg minf (xk + αdk ).

Then the new iterate is defined as xk+1  = xk + αk dk .

Illustration of the Steepest Descent Method (SDM)

19

QP Example: Let f (x) = cT x +0.5xT Qx where Q ∈ Rn×n is symmetric 
and positive definite. Then, ∇ f (xk) = c + Qxk, and the step size has a 
close form formula

αk  = −
(cT  + (xk )TQ)dk

(dk )TQdk

(dk )Tdk

= .
(dk )TQdk x0

x1

x2

Newton Direction

For quadratic minimization with 

nonsingular Hessian, the Newton method 

with unit step-size converges in one step 

to the KKT solution.
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The KKT Equations and its Jacobian Matrix:

20

Newton’s Method for ECOP
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min f (x) 

Ax-b = 0s.t.
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Description of the LP Simplex Method
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1. Initialize: with a minimization problem with respect to a BFS with basis index 
set B and let N denote the rest index set:

xB= (AB)-1b(≥0), xN=0
2. Pricing: Compute the corresponding shadow-dual price vector y and the 

reduced vector r:

yT = cT
B(AB)-1 or solve yT AB = cT

B ,then let  r=cT-yTA
and find (Dantzig rule): re  = minj∈ N {rj }. (break ties arbitrarily)

3. Test of Termination: If re  ≥ 0, Stop -- the solution is already optimal. Otherwise 
let xe be the incoming and determine whether the vector (AB)-1Ae contains a 
positive entry. If not, the objective function is unbounded below -- Stop.

4. Step Sizing: Perform the Min-Ratio-Test to determine the step size:

α=min{ xB ./[(AB)-1Ae]+ }.
5. Basis Update: Set xe = α and elect a current basic variables with zero value 
(break ties arbitrarily) be the outgoing; so that we reach a new (adjacent) BFS –
Go To Step 1.

Theorem: If the reduced cost coefficient is positive for every nonbasic
variable, then the optimal BFS is unique.
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GCOP: A Gradient Projection Method I

xk+1 = max{ 0,  xk - β-1∇ f (xk) }

yk+1 = max{ 0,  ∇ f (xk) } (dual)

min f (x) 

X ≥ 0s.t.
Project the Gradient-Step solution 
on to the feasible region:

The step-size could be chosen to minimize the function value. The 
method works for other simple bound constraints and it needs to start 
from a feasible solution. 
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The Gradient-Projection Method II

min f (x) 

Ax-b = 0s.t.

dk=-(I-AT(AAT)-1A)∇ f (xk)
or
yk= (AAT)-1A∇ f (xk)
dk=-(∇ f (xk) -ATyk)

Project the Gradient on to the 
null space of the constrained 
matrix so that it is both feasible 
and descent direction

The step-size would be chosen to minimize the function value or fixed 
according to the Lipschitz constant.
Need to start from a feasible solution.
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We start from a good approximate of x(μk) then we reduce μk to μk+1 by a 
factor such that this good approximate is still close to x(μk+1). Then we 
apply the Newton method with this good approximate of x(μk) as the 
initial solution so that one Newton step would produce a good 
approximate of x(μk+1). Then the process repeat where μ is fixed in each 
inner problem. 

24

UCOP: The Path-Following Method I

The KKT equations: 
∇ f(x) + μ x = 0

At the kth step,  we aim to find a good approximate of x to satisfy 
∇ f(x) + μk+1x = 0

We start from xk and apply the Newton iteration: compute direction 
vector d from

(∇ 2f(xk) + μk+1I )d = -∇ f(xk) – μk+1xk

then let                                        xk+1= xk + d.

min    f(x) min    fμ(x):=f(x)+ 0.5μ║x║2
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The same idea can be applied to the inequality constrained optimization 
problem by constructing a “barriered” objective function with a fixed 
parameter μ > 0. 
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GCOP: The Path-Following Method II

(BOP)
min 𝑓μ 𝑥 ≔ 𝑓(𝑥) − μ෍

𝑗=1

𝑛

ln( 𝑥𝑗)

s.t. 𝐴𝑥 = 𝑏, (𝑥 > 0)

min    f(x)
s.t.      Ax=b,

x ≥ 0

Denote by  x(μ), the minimizer of the barriered problem, and consider μ
reduces from ∞ to zero. Then, x(μ) form a continuous path strictly inside of 
the feasible region that leads to an optimal solution of the original problem 
from the analytic center. This path is called the central path. For simple 
problem one can use the KKT conditions to construct x(μ) explicitly.

For fixed μ, the problem has only equality constraints (ECOP) so that the 
Newton method is applicable. Needs to start from a strictly feasible solution.
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Comments on Path-Following Method
In both path-following cases I and II, denote by  x(μ), the minimizer of the 
parametrized problem, and consider μ reduces from ∞ to zero. Then, x(μ) 
form a continuous path that leads to an optimal solution of the original 
problem.

Numerically, we start from a good approximate of x(μk) then we reduce 
μk to μk+1 such that this good approximate is still close to x(μk+1). Then 
we apply the Newton method with this good approximate of x(μk) as 
the initial solution so that one Newton step would produce a good 
approximate of x(μk+1). Then the process repeat where μ is fixed in 
each inner problem. 

In each inner problem, we solve an unconstrained or equality-
constrained-only optimization problem so that the Newton method or 
any other method are applicable. For example, first minimize f1(x) then, 
f1/2(x), then f1/4(x)… where each problem needs only be solved 
approximately. They are typically difficult to be implemented.
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Another approach is to reduce the primal-dual potential function (that 
is parameter-free) and able to take large step size. One can apply the 
first or second order method to minimize the potential function
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Interior-Point Methods: Primal-Dual Potential Reduction

min     cTx
s.t. Ax=b,

x ≥ 0

The upper potential level set contains the optimal solution set for both 
the primal and dual. Starting from primal and dual interior solution (x0, 
y0, r0), the potential function can be reduced by a constant in each 
Newton step resulting a linear/geometric convergent algorithm.

(Matlab Demo LP and Indefinite QP.)

min 𝟐𝒏 𝒍𝒏(𝒄T𝒙 − 𝒃𝑇𝒚) +෍

𝑗=1

𝑛

ln( 𝑥𝑗𝑟𝑗)

s.t. 𝐴𝒙= 𝒃,(𝒙>𝟎)
𝐴𝑇𝒚 + 𝒓 = 𝒄(𝒓 > 𝟎)max    bTy

s.t. Ay+r=c,
r ≥ 0
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Augmented Lagrangian Method (ALM)

Augmented Lagrange Function
LA(x,y) = f(x) - (Ax - b)Ty+0.5β||Ax-b||2, x ≥ 0

Augmented Largrangian Method:
)(
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Theorem: Let f(x) be a convex function. Then the dual objective 
function ɸ(y) is Lipschitz 1/β and ∇ ɸ(yk)=-(Axk+1-b).

It is an implicit dual steepest-ascent algorithm, and the algorithm 
complexity is an O(1/ε) for the case that f(x) is a convex function. 
It does not need to start from a feasible solution.

min f (x) 

Ax-b = 0

X ≥ 0

s.t.
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Alternating Direction Method with Multipliers (ADMM)

Augmented Lagrange Function
LA(x1,x2≥0,y) = f1(x1)+f2(x2)-(A1x1+A2x2-b)Ty+0.5β||A1x1+A2x2-b||2

ADMM:
)(

);,,( minarg 

);,,(       minarg 

1
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The algorithm complexity is an O(1/ε) for the case that f1(x1)+f2(x2)
are convex functions. By choosing x1 and x2 suitably, the minimizers 
may have a simple close-form expressions – easy to be implemented.

min f1(x1)+f2(x2)

A1x1+A2x2 -b = 0

x2 ≥ 0

s.t.
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Final Comments About Algorithms
• All of the algorithms we have discussed can terminate at an 

KKT point for nonconvex optimization, each of them has pros 
and cons…

• Thus, at termination they are only guaranteed to have found 
an optimal solution in the case of convex optimization.

• Randomization sometime can help!

• So how do we find a better solution in the case of Non-convex 
Optimization?
– Generally, we simply just rerun the algorithm starting at a 

number of different starting points.

– Enumerate all KKT points, or perturb the KKT solution to get out 
of the “local trap”

– Convex reformulation or relaxations

• More advanced optimization course, CME307/MS&E311 
etc.
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