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The Newton method is effective for solving unconstrained or equality 
constrained optimization problems when the starting iterate solution is 
close to the target solution. While the global convergence is not 
guaranteed, the method has an extremely fast speed: converges 
quadratically. A natural question is, how globalize it or how to make it 
globally convergent while still achieving local efficiency. 
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Globalizing the Second-Order Newton Method

where μ is a given positive parameter and x(μ), the minimizer of the 
second problem, form a continuous path from the origin to the optimal 
solution of the original problem as μ varies from ∞ to 0. Moreover,

Theorem Let f(x) be a convex function. Then for any given 0 < μ < ∞, the 

minimizer x(μ) exists and it is unique, and, μ varies, the minimizers form 

a continuous path. In particular x(0) is the minimizer of the original 

problem with the smallest Euclidean norm.

min    f(x) min    f(x)+ 0.5μ║x║2
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A Path Example

min    (x1+2x2-1)2 min    (x1+2x2-1)2+ 0.5μ(x1)2 + 0.5μ(x2)2

2(x1+2x2-1)+ μx1 = 0
4(x1+2x2-1)+ μx2 = 0

x1= 2/(μ +10)
x2= 4/(μ +10)



We start from a good approximate of x(μk) then we reduce μk to μk+1

such that this good approximate is still close to x(μk+1). Then we apply 
the Newton method with this good approximate of x(μk) as the initial 
solution so that one Newton step would produce a good approximate
of x(μk+1). Then the process repeat.
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The Path-Following Method: Sequential Newton I

The KKT equations: 
∇ f(x) + μ x = 0

At the kth step,  we aim to find a good approximate of x to satisfy 
∇ f(x) + μk+1x = 0

We start from xk and apply the Newton iteration: to compute 
direction vector d from

(∇ 2f(xk) + μk+1I )d = -∇ f(x) – μk+1xk

then let                                        xk+1= xk + d.



In a nutshell, the path-following method create a sequence of 
milestones that lead to the final target, where each milestone is 
reached by Newton by taking its fast local-convergence advantage.
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The Path-Following Method: Sequential Newton II

Theorem   Let f(x) be a convex function and meet a Concordant 

Lipschitz condition. Then μ , can be reduced at a geometric rate in 

the path-following method where each iteration needs only one 

Newton step, which leads to a linear convergent algorithm.

In practice, one can also apply the first-order methods to solve the 
minimization problem in each iteration, whenever is reduced, 
starting from the solution of the preceding iterate solution.
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The Path-Following Matlab Code for the Example

% 

g=[2*(x(1)+2*x(2)-1);4*(x(1)+2*x(2)-1)];
H=[2 4;4 8];
d=(H+mu*eye(2))\(g+mu*x);
x=x-d;
mu=mu/2
% Path-following method for solving
%
%      minimize    (x(1)+2x(2)-1)^2 
%
%      Input: initial is set to the origin and mu=100
%
(QPpathfollowing.m)

min    (x1+2x2-1)2



The same idea can be applied to the inequality constrained 
optimization problem by constructing a “barriered” objective 
function with a fixed parameter μ > 0. 
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Barrier Function and Central Path I

(BOP) 𝐦𝐢𝐧 𝒄T𝒙 − μ෍

𝑗=1

𝑛

ln( 𝑥𝑗)

s.t. 𝐴𝒙 = 𝒃, (𝒙 > 𝟎)

min     cTx
s.t. Ax=b,

x ≥ 0

Denote by  x(μ), the minimizer of the barriered problem, and 
consider μ reduces from ∞ to zero. Then, x(μ) form a continuous 
path strictly inside of the feasible region that leads to an optimal 
solution of the original problem from the analytic center. This 
path is called the central path. 

(BOD) 𝐦𝐚𝐱 𝒃𝑇𝒚 + μ෍

𝑗=1

𝑛

ln( 𝑟𝑗)

s.t. 𝐴𝑇𝒚 + 𝒓 = 𝒄, (𝒓 > 𝟎)

max    bTy
s.t. Ay+r=c,

r ≥ 0

They are 
also primal-
dual to 
each other 



For the fixed parameter μ > 0, The KKT condition of the “barriered” 
problem with general objective function f(x) is
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Barrier Function and Central Path II

),0(,  

0/.1)( 

=

=−−

xbAx

yAxμxf T

Denote by  x(μ) together with multiplier vector y(μ), of such a KKT 
solution pair.

Theorem   Let f(x) be a convex function, the feasible region have 

an interior feasible point, and the optimal solution set be bounded 

in the original problem. Then for any 0 < μ < ∞, the central path 

point x(μ) exists and it is unique. Moreover, x(μ) converges to the 

analytic center of the optimal solution set and y(μ) converges to an 

optimal multiplier vector



x(μ)
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Illustration of Central-Path of a Linear Program

x(0)

x(μ/2)

The objective contour hyperplanes



The other root of x1 would make x2 and x3 negative so that it is not allowed.

One can see x(μ) is a unique solution of μ for 0 < μ < ∞ in the feasible 
region. Also x1(μ) -> ?   as μ -> ∞

min x1 − μ log(x1) − μ log(x2) − μ log(x3)

s.t. x1 + x2 + x3

(x1, x2, x3)

= 1,

≥0 
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An LP Central Path Example
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Thus, x1(μ) -> 1/3  as μ -> ∞, since (2/ μ) and (1/ μ2) both -> 0.
This solution is the analytic center of the feasible region of the original 
linear program.
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Interior-Point or Barrier Path-Following Methods

)0(,   s.t.  

ln)(   min 
1

=

− 
=

xbAx

)(xμxf
n

j

j

For any given  μ0 > 0 , use the Newton method to compute an 
(good approximate) minimizer x0 of the “Barriered” objective 
fμ(x) with μ=μ0. Then update μ1 =γμ0, 0 < γ < 1, where is γ called 
the reduction ratio. Again use the Newton method to compute an 
(good approximate) minimizer x1 with μ=μ1 … and continue this 
process when μk becomes sufficiently small.

When use the Newton method to compute a (good approximate) 
minimizer x1, be sure to start with x0 as the initial point, since it 
must be close to x1 … 

In particular, if we select γ carefully, one can compute an 
(approximate) center in one Newton step, resulting an O(ln(1/ε))  
algorithm when f(x) is a certain convex function !



min fμ(x)=x1 − μ log(x1) − μ log(x2) − μ log(x3)

s.t. x1 + x2 + x3

(x1, x2, x3)

= 1,

≥ 0.
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The LP Example with Barrier



























=



























−

−

−

=

2

3

2

2

2

1

2

3

2

1

)(

)(

)(

)(    ,

1

)( 

x

x

x

Diagxf

x

x

x

xf





























−

−






−







−













=














−

+

+

bAx

yAxfA

A

xf

y

x

y

x
 

k

kTkTk

k

k

k

k

      

)(

0      

   )(
12

1

1




LP Path-Following with Barrier
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MATLAB Implementation (LPpathfollowing.m)

function [x,y]=LPpathfollowing(A,b,c,x0,y0)
%
[m,n]  = size(A);
x=x0;
y=y0;
s=c-A'*y;
mu=x'*s/n;
%
for k=1:15,

g=c-mu./x; H=diag(mu./(x.*x));
G=[H -A'; A zeros(m,m)];
G\[g-A'*y; A*x-b];
x=x-ans(1:n);y=y-ans(n+1:n+m);
mu=mu*(1-1/log(1+n))

end;
%      Barrier path-following method for solving LP
%      minimize      c'*x-mu*sum(log(x))
%      subject to    Ax-b=0
%  Input 
%      x0: initial interior feasible point for the primal
%      y0: initial feasible point for the dual



min fμ(x) = -5log(2x1+x3)-8log(3x2+x4)- μ ∑log(xj) 

s.t. x1 + x2 

x3 + x4

= 1,

= 1.
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The Fisher Equilibrium Price Problem

Let us start with even initial solution 
x0=[1/2; 1/2; 1/2; 1/2], μ0=10, y0=[0; 0],

and iterate with:
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μk+1      =  μk/2
and repeat

One can also use the Gradient Projection method within 
each iteration rather than inverse a matrix 



The Fisher Equilibrium Price Solver
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MATLAB Implementation (FisherexampleBarrier2nd.m)

A=[1 1 0 0;0 0 1 1];
b=[1;1];
mu=10;
x=[1/2;1/2;1/2;1/2];
y=[0;0];
for k=1:13,

u1=2*x(1)+x(3);
u2=3*x(2)+x(4);
g=[-10/u1;-24/u2;-5/u1;-8/u2];
g=g-mu./x;
g=[g-A'*y;A*x-b];
H=[20/(u1)^2 0 10/(u1)^2 0;0 72/(u2)^2 0 24/(u2)^2;...

10/(u1)^2 0 5/(u1)^2  0;0 24/(u2)^2 0 8/(u2)^2];
H=H+diag(mu./(x.^2));
[H -A';A zeros(2,2)]\g;
x=x-ans(1:4);
y=y-ans(5:6);
mu=mu/2;

end;

First-Order? (FisherexampleBarrier1st.m)



Another approach is to reduce the primal-dual potential function (that 
is parameter-free) and able to take large step size. One can apply the 
first or second order method to minimize the potential function
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Interior-Point Methods: Primal-Dual Potential Reduction

min     cTx
s.t. Ax=b,

x ≥ 0

The upper potential level set contains the optimal solution set for both 
the primal and dual.

Starting from primal and dual interior solution (x0, y0, r0), the potential 
function can be reduced by a constant in each Newton step resulting a 
linear/geometric convergent algorithm. (Matlab Demo.)

min 𝟐𝒏 𝒍𝒏(𝒄T𝒙 − 𝒃𝑇𝒚) +෍

𝑗=1

𝑛

ln( 𝑥𝑗𝑟𝑗)

s.t. 𝐴𝒙= 𝒃,(𝒙>𝟎)
𝐴𝑇𝒚 + 𝒓 = 𝒄(𝒓 > 𝟎)max    bTy

s.t. Ay+r=c,
r ≥ 0
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LP Potential Reduction
function [x,y]=LPpotentialreduction(A,b,c,x0,y0)
[m,n]  = size(A); x=x0; y=y0; s=c-A’*y; alpha = 0.995; rho = 2*n; mu  = x'*s/n;
potential=(n+rho)*log(x'*s)-ones(n,1)'*log(x.*s)
%
for k=1:15,

gamma  = n/(n+rho);
rk = gamma*mu*ones(n,1)-x.*s;
Ak     = A*diag(x./s);
Mk     = Ak*A';
dy = -Mk\(A*(rk./s));
ds     = -A'*dy;
dx     = rk./s - (x.*ds)./s;

% Compute the step size
theta = min([dx./x;ds./s]); theta = abs(alpha/theta);
y = y+theta*dy; s = s+theta*ds; x = x+theta*dx; mu = x'*s/n;
potential=(n+rho)*log(x'*s)-ones(n,1)'*log(x.*s)

end;
% Input x0: initial interior feasible point for the primal
%            y0: initial interior feasible point for the dual



Simplex Method vs IPM
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The former produces corner solutions for primal and dual respectively, 
and the latter produces “average” of optimal solutions respectively.  

The World-Cup Example

Order Price 
Limit

Quantity 
Limit

Filled Argentina Brazil Italy Germany France

1 0.75 10 5 1 1 1

2 0.35 5 5 1

3 0.40 10 5 1 1 1

4 0.95 10 0 1 1 1 1

5 0.75 5 5 1 1

Argentina Brazil Italy Germany France

Price 0.20 0.35 0.20 0.25 0.00

State Prices



Cplex: IBM
GUROBI
COPT: Cardinal Operations

SEDUMI: http://sedumi.mcmaster.ca/

MOSEK: http://www.mosek.com/products_mosek.html

hsdLPsolver: http://www.stanford.edu/˜ yyye/matlab.html

Sparse Linear Programming Solver (matlab .m file).

CVX: http://www.stanford.edu/˜boyd/cvx

IPOPT: https://projects.coin-or.org/Ipopt (general NLP)

LP and General Convex Optimization Solvers
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