
Yinyu Ye
Department of Management Science and 

Engineering
Stanford University

Stanford, CA 94305, U.S.A.

http://www.stanford.edu/~yyye

Chapters 12.1-3, 12.5, 12.7

Constrained Optimization Algorithms I

Yinyu Ye,  Stanford, MS&E211 Lecture Notes #12 1



Yinyu Ye,  Stanford, MS&E211 Lecture Notes #12 2

Methods for Solving Constrained Optimization

The gradient projection method: project the gradient-solution onto the feasible 

set (first-order).

The feasible-direction method: search along a feasible and descent direction 

(first or second order).

The reduced gradient method: like the simplex method by changing non-basic 

variables (first-order).

Newton’s method for computing the roots of the KKT equations (second order)

The Lagrangian method: relax equality constraints into the objective function 

and update the multipliers (first or second order).

The barrier function or interior-point method: Force the iterative points inside 

of the feasible region while improve the objective function value (first or 

second-order).
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min f (x) 

Ax = b

x ≥ 0

s.t.

Equality and Inequality Constrained Problems

KKT Conditions:
∇ f(x )-ATy -r = 0

Ax = b, (x,r) ≥ 0

xjrj = 0, for all j

Thus, we are interested in finding an ε-solution pair (x,y,r) 
such that 

Approximate KKT Conditions: (x,r) ≥ 0 and y
║∇ f(x )-ATy -r ║≤ ϵ
║Ax - b║≤ ϵ

xjrj ≤ ϵ, for all j
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Gradient-Projection for Cone-Constrained Optimization

xk+1 = max{ 0,  xk - β-1∇ f (xk) }

yk+1 = max{ 0,  ∇ f (xk) } (dual)

min f (x) 

X ≥ 0s.t.

The Gradient-solution projection on to 
the feasible region would be:

The step-size could be chosen to minimize the function value.
What to do if there are up-bounds on the decision variables?

KKT Conditions
∇ f (x) – y = 0, y ≥ 0 (LDC)
x.* y = 0 (CSC)



Yinyu Ye,  Stanford, MS&E211 Lecture Notes #12 5

Gradient-Projection for Cone Constrained QP

% start from the given initial solution
x=x0;
norm(Q*x+c)
for k=1:100,

g=(Q*x+c);
x=max(0, x-(1/beta)*g);

end;
y=max(0,g);
norm(x.*y)
% Steepest Descent and Projection Method for solving 
convex QP  
%
%     minimize    0.5x'*Q*x+c'*x, s.t. x>=0
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Gradient-Projection for Equality-Constrained Optimization

min f (x) 

Ax-b = 0s.t.

Assuming that the initial solution is feasible, then all following 
solutions are feasible

What to do if there are also bounds on the decision variables 
such as x ≥ 0? 
An alternating (projection) method would be discussed later.

KKT
∇ f(x )-ATy=0 

(LDC)

xk+1 =   xk - β-1(I – AT(AAT)-1A)∇ f (xk) 

yk+1 =   (AAT)-1A∇ f (xk) (dual)
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The GP Method for ECQP: Convergence Speed

Theorem. Let the problem admit a minimizer x* and it satisfies the first-
order β-Lipschitz condition. Stating from x0 such that Ax0=b, then in at 
most 2β(f(x0)-f(x*))/ε2 steps

║∇ f (xk)-ATyk║≤ ϵ and Axk=b.
Here PA=(I-AT(AAT)-1A) is called the projection matrix. Note (PA)2=PA .

First-Order β-Lipschitz f: One can simply let dk=-(I-AT(AAT)-1A)∇ f (xk) and 
stepsize to be fixed for all iterations at β-1, that is,  

xk+1 = xk + β-1dk with yk= (AAT)-1A∇ f (xk) (dual)
Then, the following theorem can be proved.
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A Linearly Constrained Example
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If the line search is 
applied, one can find the 
minimizer in one step.
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SLP Matlab Code for the Linearly Constrained Example
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Fixing the step-size and 
starting from any 
feasible solution

The multipliers would be 
given by
y=(A*A’)\(Ag) 

% 
%P=eye(2)-A’*inv(A*A’)*A;
g=[x(1)-1;x(2)-1];
y=(A*A’)\(A*g);
gp=g-A’*g;
x=x-gp
% Gradient projection method for solving
%
%      minimize    0.5(x(1)-1)^2+0.5(x(2)-1)^2
%      subject to    x(1)+x(2)-1=0
%
%      Input: any initial feasible x
%



Machine Learning: The Wassestein Barycenter Problem I
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The minimal transportation cost in Data Science is called the 
Wasserstein distance between a supply distribution and a demand 
distribution.
The Wasserstein Barycenter Problem is to find a 
distribution/points such that the sum of its Wasserstein distances 
to each of a set of distributions/points would be minimized

mins ∑k WD(s, dk) s.t. total mass constraint

min ෍

𝑖=1

𝑁

෍

𝑗=1

𝑁

𝑐𝑖𝑗𝑥𝑖𝑗

s.t. ෍

𝑗=1

𝑁

𝑥𝑖𝑗 = 𝑠𝑖 , ∀ 𝑖 = 1,… , 𝑁

෍

𝑖=1

𝑁

𝑥𝑖𝑗 = 𝑑𝑗 , ∀ 𝑗 = 1,… , 𝑁

𝑥𝑖𝑗 ≥ 0, ∀ 𝑖, 𝑗

WD(s, dk)=

Constraints:
s1+s2+s3+s4=9
(s1,s2,s3,s4)>=0s4
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Three possible demand 
distribution
scenario of 4 cities 



Starting with a feasible solution xk , we consider again an iterative scheme 

of the form

xk+1  = xk + αk d
k

where dk is a search direction vector, both feasible and descent, and scalar 
αk is again the step-size.

In fact, once the search direction is chosen, the objective function can be 

written as f(xk + α dk), which is just function of α . Thus one can choose 

step-size α as αk according to some line (one-variable optimization) search 

to minimize the function WHILE keep xk + αk d
k feasible.

This is exact what the LP Simplex method does, where the descent 

direction is chosen with a negative reduced cost and the step-size is the 

largest possible to keep the iterate feasible.

General Feasible-Descent Direction Methods
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Again, at feasible point x , a feasible direction is

Fx := {d ∈ Rn : d ≠ 0, x + λd ∈ F for all small λ > 0}.

Examples:

Unconstrained:      Rn ⇒ Fx = Rn.

Linear Equality:     { x :Ax = b} ⇒ Fx = {d : Ad = 0 }.

Linear Inequality: { x : Ax ≥ b} ⇒ Fx= {d : ai d ≥ 0, ∀ i ∈ B(x)},

where B(x) is the binding constraint index set 

B(x) := { i : ai x = bi }.

Linear Equality and Nonnegativity: { x : Ax = b, x ≥ 0} ⇒

Fx = {d : Ad = 0, di ≥ 0, ∀ i ∈ B(x) },

where                      B(x) := { i : xi = 0 }.

Feasible Direction Space
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min ∇ f(xk)Td

d ∈ Fxk

||d||=1

s.t.

Find a Feasible-and-Descent Direction: Sequential LP

The minimizer would be the dk. This problem can be relaxed to 
a convex optimization problem 

min ∇ f(xk)Td

d ∈ Fxk

||d|| ≤ 1

s.t.

If the norm is 1 or ∞, it becomes linear program. Such a method 
is also called sequential LP method (SLP or Frank-Wolf).
If the norm is 2, it becomes a quadratic program, and sometime 
the solution has a close form if only equality constraints present. 
If the direction minimizer ∇ f(xk)Td*<0, then we find a feasible 
and descent direction so that the objective can be reduced.
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The Reduced Gradient/Newton Method

min f(b-(AB)-1ANxN, xN)

Substitute xB using

xB=b-(AB)-1ANxN

s.t.

min f (x) 

Ax-b = 0s.t.

∇ f(x )-ATy=0

min f(b-(AB)-1ANxN, xN)

This is also similar to what the LP Simplex method does (there the 

basis is updated in the reduced form). The gradient vector of the 

function is also called the reduced gradient of xN only, and it is 

identical to the reduced cost coefficient vector of xN only.



The KKT Equations and its Jacobian Matrix:
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Direct Newton’s Method for Nonlinear ECOP
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The Portfolio QP Example

Yinyu Ye,  Stanford, MS&E211 Lecture Notes #12 17
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The KKT Equations and its Jacobian Matrix:
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Newton’s Method for Nonlinear ECOP
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A Spherical Constraint QP Example I 
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A Spherical Constraint QP Example II
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MATLAB Implementation

G=[2-2*y 0 -2*x(1);0 2-2*y -2*x(2);2*x(1)   2*x(2) 0];
g=[2*(x(1)-1)-2*y*x(1);2*(x(2)-1)-2*y*x(2);x(1)^2+x(2)^2-1];
G\g;
x=x-ans(1:2);y=y-ans(3);
% Newton for
%
%      minimize    (x(1)-1)^2+(x(2)-1)^2
%      subject to    x(1)^2+x(2)^2-1=0
%
%      Input: good initial x and y

Descent-First  Feasible-Second Approach: Steepest-Descent Projection Method?
See ProjQCQPexample211.m


