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Taylor Expansion and Lipschitz Functions
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Taylor’s (or the mean-value) theorem: for some ξ between x and y

First-Order Expansion: f(y) = f(x)+∇f(ξ)T(y - x)

Second-Order Expansion: f(y) = f(x)+∇f(x)T(y-x)+
𝟏

2
(x-y)T∇ 2f(ξ)(y - x)

First-Order β-Lipschitz: for all x and y in the domain of f

| f(y) - f(x) -∇f(x)T(y-x)| ≤ 
𝛽

2
║y - x║2

Second-Order β-Lipschitz: for all x and y in the domain of f

| f(y) - f(x) -∇f(x)T(y-x)-
𝟏

2
(x-y)T∇ 2f(x)(y - x) | ≤ 

𝛽

𝟑
║y - x║3

Lipschitz Functions: exists some β ≥ 0 such that 

min f (x)  s.t. x ∈ Rn.

and we look for a KKT solution, that is, a solution x such that ∇ f (x) = 0.

(If the function is strictly convex, then the solution is unique.)



for all k ≥ K.

Solution Convergence and Convergence Speed
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f ( xk)           – f ( x*) ≤ ε, for all k ≥ K.

║ ∇ f ( x k ) ║ ≤ ε , for all k ≥ K.
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Zero-Order: the Golden-Section Method I  
Assume that the one variable function f(x) is unimodal in interval [a b], that 
is, for any point  x in interval [a’ b’] such that a ≤a’ < b’≤ b, we have that
f(x) ≤ max{ f(a’), f(b’) }. How do we find x∗ (within an error tolerance ϵ )? 
Again, without loss of generality, let a = 0and b = 1.

1. Initialization: let xl  = 0, xr = 1, and choose 

constant 0< r < 0.5;

2. Let two other points x’
l = r(xr - xl) and 

x’
r = (1 − r)(xr - xl) .

3. Update the triple points 

{xl  = xl, xr=x’r, x’r=x’l } if f (x’
l ) < f (x’

r ); 

otherwise update the triple points {xl  = x’
l , x’l=x’r, xr = xr };

4. Return to Step 2.

Golden-Section Method (0-Order Method)

one variable minimization:
min   f(x)   s.t. a≤ x ≤ b
where the function is unimodal
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Zero-Order: the Golden-Section Method II 

Then, the length of the containing interval is shrinking at rate 0.618 each 
step, so that the trial points converges to the exact minimizer x*. Precisely, 
let xk = the kept middle point of the kth step of the method. Then

| xk – x* | ≤ (0.618)k.
Thus, it is an O(log(1/ε)) zero-order algorithm.

r
xl x’l x’r xr

r1-2 r

one variable minimization:
min   f(x)   s.t. a≤ x ≤ b
where the function is unimodal

In either case of Step 3, the length of 
the new interval after one bisection 
step is (1 − r). If we set (1 − 2r)/(1 − r)= 
r, then only one point needs to be 
recomputed; which leads to r = 0.382.



For a one variable problem, an KKT point is the root of g(x) := f’(x) = 0. 
Assume we know an interval [a b] such that a < b, and g(a) · g(b) < 0. 
Then we know there exists an x∗, a < x∗< b, such that g(x∗) = 0; that is, 
interval [a, b] contains a root. How do we find x∗ (within an error 
tolerance ϵ )? Without loss of generality, let a = 0 and b = 1.

First-Order: The Bisection Method I 
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1. Initialization: let xl  = a, xr = b ; 
2. Let xm = (xl + xr )/2 and evaluate g(xm).

3. If g(xm) = 0 or xr − xl  <ε stop and 

output x∗= xm.

4. Otherwise, if g(xl) · g(xm) > 0 set xl  = xm; else set xr = xm; and return 
to Step 2.

What is the length of the new interval containing a root after one 
bisection step? 

Bisection Method

x l xrx   m



x l xrx   m
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The Bisection Method II 

The length of the containing 
interval is halved each step, 
so that the trial points 
converges to an exact root x*. 

Precisely, let xk = xm of the kth
step of the method. Then

| xk – x* | ≤ 2-k.
Thus, it is an O(log(1/ε)) first 
order algorithm.



Again, for functions of a single real variable x, the KKT solution is the root 

of g(x) := f’(x) = 0. 

When f is twice continuously differentiable then g is once continuously 
differentiable, Newton’s method can be a very effective way to solve such 

equations and hence to locate a root of g. 

Given a starting point x0, the iterative process 
of the Newton method for finding the root is

xk+1 = xk - g(xk)/g’(xk)= xk – f’(xk)/f”(xk)
where the iteration formula is well defined 
provided that g’(xk)=f”(xk) ≠ 0 at each step.

This condition would hold if the starting point x0 is sufficiently close to the 
root x* and g’(x*)=f”(x*) ≠ 0.

2nd-Order: The Newton Method I 
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g(x)
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Convergence of the Newton Method 

Thus, when xk is sufficiently 
close to x* we would have
|xk+1 – x*| ≤ c|xk – x*|2 .
for some constant c. 
Furthermore, if c|xk – x*|≤1,
c|xk+1 – x*| ≤ (c|xk – x*|)2˂1,
and this error is squared at 
each iteration, which leads to
O(log[log(1/ϵ)]) local 
convergence speed.

g(x)

xk+1 = xk - g(xk)/g’(xk) → 
xk+1 -x*= xk –x*- g(xk)/g’(xk)

=[g(x*)-g(xk)-g’(xk)(x*-xk)]/g’(xk)

=
𝟏

2
[g”(ξ)/g’(xk)](xk-x*)2

from the first-order Taylor theorem, 
where ξ is a value between xk and x*.



Zero-Order: The Simplicial and/or Forward-Difference

Yinyu Ye,  Stanford, MS&E211 Lecture Notes #11 10

Simplicial Method:
1. Start with a Triangle/Simplex with d+1 corner points and their objective function 
values.
2. Reflection:  Compute other d+1 corner points each of them is an additional corner 
point of a reflection simplex. If a point is better than its counter point, then the 
reflection simplex is an improved simplex,  and select the most improved simplex 
and go to Step 1; otherwise go to Step 3. 
3. Contraction: Compute the d+1 middle-face points and subdivide the simplex into 
smaller d+1 simplexes, keep the simplex with the lowest sum of the d+1 function 
values at corners, and go to Step 1.

Forward-Difference: compute numerical partial derivatives (ZeroorderNLP.m)

min f (x)  
s.t. x ∈ Rn.



min f (x)  s.t. x ∈ Rn.

and we look for a KKT solution, that is, a solution x such that ∇ f (x) = 0.

Unconstrained Minimization of Differentiable Functions
With Multiple Variables
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General Descent Method



The Steepest Descent/(sub)Gradient Method: First-Order
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Theorem 1. Let f(x) be a convex function and admit a minimizer x*, and it 
satisfies the first-order β-Lipschitz condition. Then

f(xk) - f(x*) ≤ 2β||x0 - x*||/k.

Note that the algorithm uses a fixed step size and information of the 
immediate early iterate. This is an O(ε-1) first order algorithm.

First-Order β-Lipschitz f: One can choose dk=-∇ f (xk) and stepsize to be 
fixed for all iterations at β-1, that is,  

xk+1 = xk - β-1∇ f (xk)
Then, the following theorem can be proved.

Theorem 2. Let f(x) admit a minimizer x* and it satisfies the first-order β-
Lipschitz condition. Then in at most 2β(f(x0)-f(x*))/ε2 steps

║∇ f (xk)║≤ ϵ.



Proof of Theorem 2 for SDM
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If ║∇ f (xk)║> ϵ during the iterative process, then

0 ≤ f(xk) - f(x*) < f(x0) - f(x*) -
𝑘

2
β-1ϵ2

But ║∇ f (xk)║> ϵ cannot hold during the entire process when
k ≤ 2β(f(x0)-f(x*))/ε2

since then the right-hand-side becomes 0 or negative, which is a 
contradiction.

xk+1 = xk - β-1∇ f (xk)
f(xk+1) - f(x*)= f(xk- β-1∇ f (xk)) - f(x*) 

≤  f(xk) - β-1∇ f (xk)T∇ f (xk)+
𝛽

2
β-2║∇ f (xk)║2 - f(x*) 

= f(xk) - β-1║∇ f (xk)║2+
𝟏

2
β-1║∇ f (xk)║2 - f(x*)

= f(xk) - f(x*) -
𝟏

2
β-1║∇ f (xk)║2

Remark: ∇ f (xk) can be a sub-gradient vector such as in piece-wise linear 
minimization



The Accelerated Steepest Descent Method
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𝜆0 = 0, 𝜆1 = 1, 𝜆𝑘+1 =
1 + 1 + 4(𝜆𝑘)2

2
, 𝛼𝑘 =

1 − 𝜆𝑘

𝜆𝑘+1

෤𝑥𝑘+1 = 𝑥𝑘 −
1

𝛽
∇𝑓(𝑥𝑘), 𝑥𝑘+1 = (1 − 𝛼𝑘) ෤𝑥𝑘+1 + 𝛼𝑘 ෤𝑥𝑘

Note that the algorithm uses information of two immediate early 
iterates,  and αk < 0. This is an O(ε-0.5) first order algorithm.

There is an accelerated steepest descent method for minimizing a β-
smooth convex function such that

f(xk) - f(x*) ≤ 2β||x0 - x*||/k2.

෤𝑥𝑘+1
෤𝑥𝑘

𝑥𝑘+1
−∇𝑓(𝑥𝑘)

𝑥𝑘



Again, the method chooses dk  = −∇ f (xk ) as the search direction at 

each step and set αk  = arg minf (xk + αdk ).

Then the new iterate is defined as xk+1  = xk + αk dk .

The Steepest Descent Method with Varying Step-sizes I
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QP Example: Let f (x) = cT x +0.5xT Qx where Q ∈ Rn×n is symmetric 
and positive definite. Then, ∇ f (xk) = c + Qxk, and the step size has a 
close form formula

αk  = −
(cT + (xk )TQ)dk

(dk )TQdk

(dk )Tdk

= .
(dk )TQdk

Initial Interval Finding for Line Search: 

Start with [0, α = 1]; if function value 

is lower, double α and check again till 

the value to start increasing.



The Steepest Descent Method with Varying Step-sizes II
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There is another steepest descent method for 
minimizing a smooth convex function with a smart and 
varying step-size selection, called the Barzilai-Borwein
(BB) method:

Let ∆𝒙
𝒌= xk- xk-1 and ∆𝒈

𝒌 = ∇f(xk) - ∇f(xk-1);

Set step-size        αk = ║∆𝒙
𝒌║2/(∆𝒙

𝒌 ●∆𝒈
𝒌)

Then let                    xk+1 = xk- αk∇f(xk):



Theorem Let f : Rn → R be given. For some given point x0  ∈ Rn, let the 

level set X0  = {x ∈ Rn : f (x) ≤ f (x0)} be bounded. Assume further that f is 

continuously differentiable on the convex hull of X 0. Let {xk } be the 

sequence of points generated by the steepest descent method (with 

line search) initiated at x0. Then every accumulation point of {xk } is a 

KKT point of f .

Convergence of the SDM for General Functions
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Remarks: 1) The steepest descent method initiated at any point of the 
bounded level set X 0 will converge to a stationary point of f . In other words, it 
is not necessary to start the process in a neighborhood of the (unknown) 
optimal solution. This property is called global convergence.
2) To solve strictly convex quadratic minimization, the algorithm has a 
geometric convergence speed O(log(1/ϵ)) where the constant depending on Q.
3) Only to a stationary point, not local minimizer:  

min  x2-y2+y4 starting from (x=1,y=0).



Finding a root vector of n variables from n nonlinear equations

∇ f (x) = 0.

Newton’s Method: Second-Order
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Newton’s Method for Minimization

QP Example: Let f (x) = cT x +0.5xT Qx where Q ∈ Rn×n is symmetric 
and positive definite. Then, ∇ f (x0) = c + Qx0, ∇ 2f (x0) = Q so that

x1  = x0 – Q-1(c + Qx0)= – Q-1c, the exact KKT point.



Local Convergence Theorem of Newton’s Method
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System Equation Example:

Newton’s Method can be applied to any system of nonlinear equations 
F(x) = 0 where vector functions are continuously differentiable and admit 
a root vector x*, and the Jacobian∇ F(x) is nonsingular everywhere. Then 
provided that ||x0 - x*|| is sufficiently small, the iterate sequence 
generated by Newton’s method: xk+1  = xk - ∇ F(x)-1F(xk), converges 
quadratically to root x*.
What is quadratic convergence: there is a constant c such that 

||xk+1 - x*||≤c ||xk - x*|| 2
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Convergence Illustration of Newton’s Method
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Contour of the 
first equation

Contour of the 
second equation

Jacobian singular 
point set 

Two Roots

Depending on where the starting point is, the method may converge 
to one of the two roots, or it may fail to converge at all.



Newton’s Method Matlab Code for the Example
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%
F=0*x;
F(1)=x(2)-log(x(1));
F(2)=x(1)^2+x(2)^2-1;
J=[-1/x(1) 1; 2*x(1) 2*x(2)];
x=x-J\F;
norm(F)



Newton’s Method May not Converge
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Newton’s Method may not converge even when the Jacobian matrix is 
invertible everywhere: consider to find the root of one-variable 
function

Try starting from x ≥ 4.



Modified Newton’s Method 
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Modified Newton’s Method for Minimization of f(x)

Note that when μ is large enough so that μ I+(1-μ)∇2f (xk) is positive 

definite, then dk becomes a descent direction. By carefully choosing it and step-

size, then the algorithm stops in O(1/ε1.5) iterations.
There are also Quasi Newton and Conjugate Gradient methods that are 
learning the Hessian during the iterative process; see Chapters 9 and 10.


