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Two-Person Zero-Sum Matrix Game

P is the payoff matrix of a two-person, ”Column” and ”Row”, zero-sum game.
Player Column Player chooses column(s) to maximize the payoff to Column
Player Row chooses row(s) to minimize the payoff to Column

Pure Strategy: Each player chooses a single column (row).

Mixed or Randomized Strategy: Each player randomly chooses columns 
(rows) strategies with a fixed probability distribution.

Nash Equilibrium: No player can alter its probability distribution to 
achieve better expected payoff.
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Two-Person Zero-Sum Matrix Game II

Player Column Player: probabilities x1 to choose column 1, x2 to choose 
column 2, and x3 to choose column 3. Then the expected payoff is

3x1 – x2 -3x3 if Player Row chooses row 1
-3x1 + x2 +4x3 if Player Row chooses row 2

Thus, Player Column would
maximize(x1,x2,x3)    min{3x1 – x2 -3x3 , -3x1 + x2 +4x3}

s.t. X1+x2+x3 =1, (x1,x2,x3) ≥ 0
which can be cast as a linear program

maximize(x1,x2,x3,v)                                             v
s.t. -3x1 + x2 +3x3 + v ≤ 0      

3x1 - x2 - 4x3 + v ≤ 0      
x1 +  x2 +  x3 =1, 
(x1,x2,x3) ≥ 0

3 − 1 − 3
−3 1 4
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Two-Person Zero-Sum Matrix Game III

Then, the dual of the linear program
minimize(y1,y2,u)              u

s.t. u – (3y1 - 3y2 )  ≥ 0      
u – ( -y1 + y2 )    ≥ 0 
u – (-3y1+ 4y2 )  ≥ 0      

y1 +  y2 =1,  (y1,y2) ≥ 0

Interpretations:
Player Row: probabilities y1 to choose row 1, y2 to choose row 2. Then the 
expected payoff to Player Column is

3y1 - 3y2        if Player Column chooses column 1
-y1 + y2        if Player Column chooses column 2
-3y1+4y2        if Player Column chooses column 3;

and Player Row does
minimize(y1,y2)    max{3y1 - 3y2, -y1 + y2 , -3y1+4y2 }

s.t. y1+y2 =1, (y1,y2) ≥ 0

3 − 1 − 3
−3 1 4
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Robust Portfolio Management I

Two stocks with return rate 0.5 each, and stock 2 has 
more variance, and the two are negatively correlated

This is a convex 
optimization 
problem
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Application: Robust Portfolio Management II

But the return two return 
rates are uncertain, and 
they are in the range
μ1+μ2=1, (μ1)2+(μ2)2 ≤ 1
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The inner problem is  
maximization, representing 
the decision makers’ 
complete risk reverse attitude

Replacing the inner 
problem by its dual
(see next slide).
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The Dual of the Inner Problem
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Application: Robust Portfolio Management III
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The objectives of the 
outer and inner problems 
are now aligned, so that 
we can combine them 
into a joint single layer 
problem
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Application: Robust Portfolio Management IV
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• Deep Learning Based on Sample Writings
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[Goodfellow et al. 14]

Sample-Based Learning May be Vulnerable
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Look at a Max-Flow Problem 



Let xij be the flow rate from node i to node j. Then the problem 

can be formulated as

max x41

x21 + x31 + x41 − x12 − x13

x12 + x32 + x42 − x21 − x23 − x24

x13 + x23 + x43 − x31 − x32 − x34

x24 + x34 − x41 − x42 − x43

xij 

xij

y1  

y2  

y3  

y4 

z ij

s.t. = 0,

= 0,

= 0,

= 0,

≤ kij , ∀(i, j) ∈ A,

≥ 0, ∀(i, j) ∈ A.
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The Primal Formulation 

Corresponding 
Dual variables
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The Dual of Max-Flow: the Min-Cut Problem 

yi: node potential value; wlog set y4  = 0 so that y1  = 1 and at 
optimality for all other yi:

min ∑ (i,j)∈A 
kij zij

s.t. y1 − y4  = 1,

−y1 + y2 + z12  ≥ 0,

−y1 + y3 + z13  ≥ 0,

...

−y2 + y4 + z24  ≥ 0,

−y3 + y4 + z34  ≥ 0, 

zij ≥ 0, ∀(i, j) ∈ A.

x41  

x12  

x13  

…

x 24

x34

1   if i is on the source side                             1, if yi=1 and yj=0

yi = and zij=                                         

0  if i is not in the source side                          0   otherwise

Corresponding
Primal variables
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The Min-Cut Solution: Min-Cut Value=8 

z24 = 1
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All other zij=0



Consider a finite set G of manufacture firms each of whom has 

operations that have representations as production linear programs: 

maximize the firm’s profit cTx subject to the resource consumption 

constraint Ax ≤ bi, where bi is the resource vector owned by firm I, that 

is,

For example

Let three firms A, B and C and each own resource vector:
bA = (1; 0; 0.5),    bB = (0; 1; 0.5), bC = (0; 0; 0.5)

max x1 +2x2

s.t. x1

x1+

x2

x2

≤ b1

≤ b2

≤ b3

x1 x2 ≥ 0
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Production Collaborative Game 

V i :=  max cT x s.t. Ax ≤ bi ,  x ≥ 0



The Grand Alliance is the set G including all firms, and its total profit is 
exactly

An (sub-)alliance is a subset of the firms to pool their resources together 

to find the optimal production mix. For any subset S of the firms, the 

quarantined pay-off, V S, to the firms in S is the optimal objective value of 

the linear program:
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Alliances and Core in the Production Game 

V S  :=  max cT x s.t. Ax ≤ bS := ∑i in S b
i,  x ≥ 0

V G  :=  max cT x s.t. Ax ≤ bS := ∑i in G b
i,  x ≥ 0

The core of the grand alliance is set of payments, zi, from the Grand 

Alliance to firm I, such that 

and 

In other words, no subgroup can do better by deserting the grand 

coalition to form their own sub-alliance.

∑i in G z
i = vG ∑i in S z

i ≥ vS for all subset S of  G



Theorem   The core of the grand alliance of the LP production game 

exists. Moreover, one specific core allocation is to allocate each firm the 

value of its resource vector evaluated at the optimal shadow prices of the 

grand alliance production linear program.
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Answer: Use the Shadow Prices of the Grand Production 

The pooled resources of the grand alliance are
bA +  bB +  bC = (1; 1; 1.5)

so it is the production problem we solved earlier with the maximal profit 
2.5 and the optimal shadows prices

yT = (0   1     1).
Thus, the profit allocation to

A:       =yTbA = 0·1+1·0+1·0.5=0.5
B:       =yTbB = 0·0+1·1+1·0.5=1.5
C:       =yTbC = 0·0+1·0+1·0.5=0.5

which is a core allocation. 
The proof is entirely based on the LP weak and strong duality theorems.



The ith order is given as triple (ai ∈ Rm, πi ∈ R+, qi  ∈ R+): 

ai = (ai1, ai2, ..., aim)
is the betting indication row vector where each component is 
either 1 or 0, where 1 is winning state and 0 is non-winning 
state; 

πi is the bidding price for one share of such a contract, and 

qi is the maximum number of shares the bidder like to own.

A contract /share on an order is a paper agreement so that on 

maturity it is worth a notional $1 dollar if the order includes the 

winning state and worth $0 otherwise.

Let xi be the number of units awarded to the ith order.
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The Dual of the Information Market Problem



max πT x  −      xn+1

s.t. AT x − 1 · xn+1  ≤ 0

x                 ≤ q 

x                 ≥ 0

xn+1 free

where 1 is the vector of all ones.

πT x: the revenue amount can be collected.
xn+ 1 : the worst-case cost (amount need to pay to the winners).
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A Risk-Free Mechanism of Market Maker 
Corresponding 

Dual Variables

p

s



pj: the shadow/dual price of state j;

aip: the ith order unit cost at prices p; 

sj: the unit profit from the jth order ( s=max{0, π-Ap} )

The dual problem is to minimize the total “Regression Loss” 
collected from the (competitive or high-bid) orders, qT s.

min qT s

s.t. Ap + s

−1T p

≥  π,

= −1,

(p, s) ≥ 0.
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The Dual: Regression with “Under-Bid” Filtering 



pj: the shadow-price/probability estimation of state j;

aip: the ith order unit cost at prices p; 

πi: the ith order bidding price;

qi: the ith order quantity limit;

The dual problem is to minimize the total weighted 
discrepancy among the competitive bidders such that all 
winners’ betting beliefs π are fully utilized, while under-
bidders (outliers) would be automatically removed from the 
estimation.

min qT max{0, π-Ap} 

s.t. 1T p
p

= 1,
≥ 0
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ReLu-Regression for Probability Distribution/Information



The World Cup Betting Example
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Orders Filled

Order Price 
Limit

Quantity 
Limit

Filled Argentina Brazil Italy Germany France

1 0.75 10 5 1 1 1

2 0.35 5 5 1

3 0.40 10 5 1 1 1

4 0.95 10 0 1 1 1 1

5 0.75 5 5 1 1

Argentina Brazil Italy Germany France

Price 0.20 0.35 0.20 0.25 0.00

State Prices



Online Retail Sell

• There is a fixed selling period or number of buyers; 

and there is a fixed inventory of goods

• Customers come and require a bundle of goods and 

make a bid

• Decision: To sell or not to sell to each individual 

customer?

• Objective: Maximize the revenue.

Bid # $100 $30 …. … … Inventory

Decision x1 x2

Pants 1 0 …. … … 100

Shoes 1 0 50

T-Shirts 0 1 500

Jackets 0 0 200

Hats 1 1 … … … 1000
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On-Line Retailer Linear Programming

• Off-line Problem is an (0,1) linear 

program that can be relaxed as LP

• But now trader/Bidders come one by one

sequentially, 

• The retailer has to make the decision as 

soon as an order arrives with the arrived 

combinatorial order/bid (ak,k)

• The retailer faces a dilemma:

– To sell or not to sell – this is the 

decision

• Optimal Policy or Online Algorithm?
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max ෍

j=1

𝑛

𝜋𝑗𝑥𝑗

s.t. ෍

𝑗=1

𝑛

𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 ∀𝑖 = 1, . . . , 𝑚

0 ≤ 𝑥𝑗 ≤ 1 ∀𝑗 = 1, . . , 𝑛
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𝑛

𝜋𝑗𝑥𝑗

s.t. ෍

𝑗=1

𝑛

𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 ∀𝑖 = 1, . . . , 𝑚

𝑥𝑗 = {0 𝑜𝑟 1} ∀𝑗 = 1, . . , 𝑛



CSC of Off-Line Retailer Linear 

Programming

• Let the optimal solution be x* and 

the optimal shadow piece be y*

• Then from the CSC conditions:

xj* = 1 if j > aj
Ty*

xj* = 0 if j < aj
Ty*

xj* = fraction if j = aj
Ty*

• If we know y*, the online decision 

would be easy!
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max ෍
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𝑛

𝜋𝑗𝑥𝑗
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𝑗=1

𝑛

𝑎𝑖𝑗𝑥𝑗 ≤ 𝑏𝑖 ∀𝑖 = 1, . . . , 𝑚

0 ≤ 𝑥𝑗 ≤ 1 ∀𝑗 = 1, . . , 𝑛
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Online Algorithm and Price-Mechanism

• Learn “ideal” itemized optimal prices

• Use the prices to price each bid 

• Accept if it is a over bid, and reject otherwise

Bid # $100 $30 …. … … Inventory Price?

Decision x1 x2

Pants 1 0 …. … … 100 45

Shoes 1 0 50 45

T-Shirts 0 1 500 10

Jackets 0 0 200 55

Hats 1 1 … … … 1000 15
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How to Learn the Shadow Prices Sequentially?
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• Sequential Linear Programming Mechanism (SLPM)
• Solving the LP based on immediately past several 

periods’ data and use the resulted optimal shadow 
prices to make decision for the next period orders; and 
repeat when the current period is over.

• The shadow prices are updated periodically and 
being used to make online decisions for the next 
period.



Wait for Data from 1 to εn
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• Set xj=0 for j=1,…,εn.

• Solve LP:

• Let p1 be the optimal 
shadow price vector 
and use it to make 
online decision for 
orders from εn+1 to 
2εn.

max ෍

j=1

𝜀𝑛

𝜋𝑗𝑥𝑗

s.t. ෍

𝑗=1

𝜀𝑛

𝑎𝑖𝑗𝑥𝑗 ≤ 𝜀𝑏𝑖 ∀𝑖

0 ≤ 𝑥𝑗 ≤ 1 ∀𝑗



Now Use All Data from 1 to 2εn
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max ෍

j=1

2𝜀𝑛

𝜋𝑗𝑥𝑗

s.t. ෍

𝑗=1

2𝜀𝑛

𝑎𝑖𝑗𝑥𝑗 ≤ 2𝜀𝑏𝑖 ∀𝑖

0 ≤ 𝑥𝑗 ≤ 1 ∀𝑗

• Now solve LP:

• Let p2 be the optimal shadow price vector and use it to 
make online decision for orders from 2εn+1 to 4εn.



Now Use All Data from 1 to 4εn
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max ෍

j=1

4𝜀𝑛

𝜋𝑗𝑥𝑗

s.t. ෍

𝑗=1

4𝜀𝑛

𝑎𝑖𝑗𝑥𝑗 ≤ 4𝜀𝑏𝑖 ∀𝑖

0 ≤ 𝑥𝑗 ≤ 1 ∀𝑗

• Now solve LP:

• Let p3 be the optimal shadow price vector and use it to 
make online decision for orders from 4εn+1 to 8εn.



Use Observed Data: Decisioning while Learning
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Theorem: Let the orders come randomly and let

mini { bi } ≥ mlog(n)/ε2.

Then 

the expected online revenue ≥ (1 – ε ) the offline revenue.

On the other hand, if  mini { bi } < log(m)/ε2.

then no mechanism/algorithm can achieve the (1 – ε ) 

guarantee.

Resource b

εn 2εn 4εn 8εn 16εn …

Resources allocated at each update point is proportional to the number 
of customers already arrived. 



Adaptively Update Prices after every Batch of Orders
using the Remaining Average Inventory 
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• Now solve LP:

• Here bk is the remaining inventory before the next batch of 
orders arrive.

max ෍

j=1

𝑘

𝜋𝑗𝑥𝑗

s.t. ෍

𝑗=1

𝑘

𝑎𝑖𝑗𝑥𝑗 ≤ (𝑘/(𝑛 − 𝑘 + 1))𝑏𝑘𝑖 ∀𝑖

0 ≤ 𝑥𝑗 ≤ 1 ∀𝑗



Update Prices by the Gradient Method
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