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Two-Person Zero-Sum Matrix Game

(—33 _11 _43):P

P is the payoff matrix of a two-person, "Column” and “Row”, zero-sum game.
Player Column Player chooses column(s) to maximize the payoff to Column
Player Row chooses row(s) to minimize the payoff to Column

Pure Strategy: Each player chooses a single column (row).

Mixed or Randomized Strategy: Each player randomly chooses columns
(rows) strategies with a fixed probability distribution.

Nash Equilibrium: No player can alter its probability distribution to
achieve better expected payoff.
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Two-Person Zero-Sum Matrix Game ||
( 3 —1 —3)
—3 1 4

Player Column Player: probabilities x, to choose column 1, x, to choose
column 2, and x; to choose column 3. Then the expected payoff is

3X; — X, -3X% if Player Row chooses row 1

-3X; + X, +4X, if Player Row chooses row 2

Thus, Player Column would
Maximize ,; 5 43y MIN{3X; — X, -3X3, -3X; + X, +4X5}

s.t. X{HX,+x5 =1, (X{,X,,%3) 20
which can be cast as a linear program
Maximize ,; ,» y3.v) %
s.t. -3X; + X, +3X3 +v<0 Y1
3X; - X, -4x3+v<0 Y,
X, + X, + X3 =1, u

(X1,%,,%3) 20



Two-Person Zero-Sum Matrix Game ll|

5 3 )

Then, the dual of the linear program
minimize, ., u
s.t. u—(3y;-3y,) 20
u—(-y;+y,) 20
u-—(-3y,;+4y,) 20
Y1 +V, =1, (yuy,) 20
Interpretations:
Player Row: probabilities y, to choose row 1, y, to choose row 2. Then the
expected payoff to Player Column is
3y, -3y, if Player Column chooses column 1
-y, +y, if Player Column chooses column 2
-3y,+4y, if Player Column chooses column 3;
and Player Row does
minimize, ., mMax{3y, - 3y,, -y; +V,, -3y;+4y, }
s.t. Y1y, =1, (Y,Y,) 20
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Robust Portfolio Management |

Two stocks with return rate 0.5 each, and stock 2 has
more variance, and the two are negatively correlated

min (X1)2 + 2(x2)2 — lex2 — 0,5)(1 — ().5)(2 This is a convex
optimization
S.L KX = 1 problem

FONC are sufficient :set the (partial) derivative s of LF
L(X.,X,,Y) = (%)*+2(x,)* —2x,X, —0.5x, —0.5x,
o Y(Xl T X, _1)

t0 zeros

2% —2X,—0.5-y =0, 4x, -2X,—0.5-y=0
=X, =0.59+y= X, =0.75+1.5y =
max ¢(y)=-0.3125-0.25y —1.25y"




Application: Robust Portfolio Management |l

But the return two return
rates are uncertain, and
they are in the range

min (X1)2 T 2(X2)2 = 2X,X, = X — HX,
st X +X,=1

=1, (Mg)*+H(K,)* <1
min ()2 +2(x,)? - 2%X, + Myt,=1, (1) + (1)

( Y| Theinner problem is
max ., ,— — X, L,

] iz~ Mokl L | maximization, representing
s.t. w1 =1, (1) + ()’ <1|| the decision makers’

complete risk reverse attitude

st Xx+Xx=1,

min  (x,)°+2(X,)° —2XX, +

(=%, = ¥,)2 + (=X, - ,)° Replacing the inner
yLy2 4y, At Yal| problem by its dual
(see next slide).

3

min
<

st y, free,y, >0

st X +X, =1
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The Dual of the Inner Problem

maXXl,XZ C1X1 + C2 X7 ]
st. x;+x, =1, Ay,: free (=== Primal
(x))%*+ (x)* <1, Ay, =0

L(Xl’ Xy, Y) =G X, +C, X, — yl(xl X, _1)
o yz ((X1)2 + (X2)2 _1)1

[Cl — Y _ZY2X1 j _ (Oj
C, — Y1 = 2¥,X, 0
c,—V,) +(c,—V,)’
¢(y):(1 Yi)"+(S, — i) Y+,

4y, éammm Dual
min ¢(y), s.t. y, free,y, >0
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Application: Robust Portfolio Management Il

min  (x,)°+2(X,)° —2XX, +

(_Xl B y1)2 + (_Xz B y1)2
4y,
S.t. y, free,y, >0

J min VLy2

.

st X +X, =1

3

"‘)’1"‘3’2’>

The objectives of the
outer and inner problems
are now aligned, so that
we can combine them
into a joint single layer
problem

min (x,)° +2(x,)? —2X,X, +

(% +Y)2+ (X, + V,)°

s.t. X, +X, =1y, free,y, >0

+y, +
ay, Yit Yo

s.t. X, +X, =1y, free

min (%)% +2(%,)2 = 2X,X, ++/ (%, + ¥,)2 + (%, + ¥,) + Y,

Now, given x, and x,, min yl + I

how to find

minimizer y,? S.1. \/(X1 + y1)2 + (X2 + y1)2 <Tr, ylfree,

=—min{X,, X, }
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Application: Robust Portfolio Management IV

S.t. X, +X, =1.

min (%)% +2(%,)* —2x,x, —min{x, X,}

min (x,)° +2(x,)? —2X,X, — Z
st. X, +X,=1 X212, X,=22

This is a convex
optimization
problem

FONC are sufficient :try z = X,

1

2X, —2X,—y =0, 4x, =2X,-1-y =

:>6X2—4X1—1=O:>X2:§:>x1:

0

L
2
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* Deep Learning Based on Sample Writings
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Sample-Based Learning May be Vulnerable

“panda” “gibbon”

57.7% confidence 00.3% confidence

[Goodfellow et al. 14]

Yinyu Ye, Stanford, MS&E211 Lecture Notes #8



Look at a Max-Flow Problem

Yinyu Ye, Stanford, MS&E211 Lecture Notes #8

Sink

12



The Primal Formulation

Let x;; be the flow rate from node i to node j. Then the problem

can be formulated as

Max

S.t.

X41

X21 * X31+ Xq1 — X12 — X13

X12 + X32 + X42 — X2o1 — X23 — X24
X13 + X23 + X43 — X31 — X32 — X34
X24 + X34 — X41 — X42 — X43

Xij

Xij
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=0, Y1
=0, Y2
=0, Y3
=0, Ya

< kij, \V/(i,j) € A, Zij

>0, V(i j) € A. I

Corresponding
Dual variables
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The Dual of Max-Flow: the Min-Cut Problem

Corresponding

min 2 (ij)ea U2 Primal variables
s.L. yi—ya=1, X41

—y1+ Yo+ 212 20, X12

—y1+ Y3+ 21320, X13

=Y2+ Va+ 224 20, X 24

Y3+ Ya+ 234 20, X34

zij 20, Hi, j) EA.

yi: node potential value; wlog set y, =0 so that y; =1 and at
optimality for all other y:

1 ifiis on the source side 1, ify;=1andy;=0
y;{ and z.= {

]

O ifi1is not in the source side 0O otherwise
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The Min-Cut Solution: Min-Cut Value=8

Source 23=1 Sink

All other z,=0
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Production Collaborative Game

Consider a finite set G of manufacture firms each of whom has
operations that have representations as production linear programs:
maximize the firm’s profit c’x subject to the resource consumption
constraint Ax < b’, where b'is the resource vector owned by firm /, that
IS,

Vi:i=maxc'x st Ax<b x>0
For example mMax X1 +2x,
S.t. X1 Sbl
X7 <b,
X+ % < b,
X4 X, 20

Let three firms A, B and C and each own resource vector:
bA=(1; 0; 0.5), b®=(0;1;0.5), b= (0;0; 0.5)
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Alliances and Core in the Production Game

An (sub-)alliance is a subset of the firms to pool their resources together
to find the optimal production mix. For any subset S of the firms, the
quarantined pay-off, V>, to the firms in S is the optimal objective value of
the linear program:

V> := maxc'x st Ax<b:=3 . . b, x>0

The Grand Alliance is the set G including all firms, and its total profit is

exactly
VG := maxc’x st Ax<b%:=5. .b, x>0

The core of the grand alliance is set of payments, z!, from the Grand
Alliance to firm |, such that

JincZ =Vv¢ and J.,sZ 2v° forall subsetSof G
In other words, no subgroup can do better by deserting the grand

coalition to form their own sub-alliance.
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Answer: Use the Shadow Prices of the Grand Production

Theorem The core of the grand alliance of the LP production game
exists. Moreover, one specific core allocation is to allocate each firm the
value of its resource vector evaluated at the optimal shadow prices of the

grand alliance production linear program.

The pooled resources of the grand alliance are

bA+ b®+ b®=(1;1; 1.5)
so it is the production problem we solved earlier with the maximal profit
2.5 and the optimal shadows prices

y'=(0 1 1).

Thus, the profit allocation to

A: =y’b*=0-1+1-0+1-0.5=0.5

B: =yb®=0-0+1-1+1-0.5=1.5

C: =y™°=0-0+1-0+1-0.5=0.5
which is a core allocation.
The proof is entirely based on the LP weak and strong duality theorems.
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The Dual of the Information Market Problem

The ith order is given as triple (a; ER™, m; €R., qi €R.):

ai = (ai1, a2, ..., Aim)
is the betting indication row vector where each component is
either 1 or O, where 1 is winning state and O is non-winning

state;

tiis the bidding price for one share of such a contract, and
giis the maximum number of shares the bidder like to own.
A contract /share on an order is a paper agreement so that on

maturity it is worth a notional S1 dollar if the order includes the

winning state and worth SO otherwise.

Let x;be the number of units awarded to the ith order.

Yinyu Ye, Stanford, MS&E211 Lecture Notes #8
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A Risk-Free Mechanism of Market Maker

Corresponding
Dual Variables

max 7'X —  Xp1
st. A'x-1-xp:1<0 p
X <
X >0
Xn+1 free

where 1 is the vector of all ones.

" X: the revenue amount can be collected.
Xn+1: the worst-case cost (amount need to pay to the winners).
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The Dual: Regression with “Under-Bid” Filtering

min q's
s.t. Ap+s 2,
-1'p  =-1,
(p, s) 2 0.

p;: the shadow/dual price of state j;

a;p: the ith order unit cost at prices p;
s;: the unit profit from the jth order ( s=max{0, r-Ap} )

The dual problem is to minimize the total “Regression Loss”
collected from the (competitive or high-bid) orders, g’s.

Yinyu Ye, Stanford, MS&E211 Lecture Notes #8
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RelLu-Regression for Probability Distribution/Information

min g’ max{0, r-Ap}
s.t. 1p =1,
p 20

p;: the shadow-price/probability estimation of state j;

a;p: the ith order unit cost at prices p;
rt;: the jith order bidding price;

q: the ith order quantity limit;

The dual problem is to minimize the total weighted
discrepancy among the competitive bidders such that all
winners’ betting beliefs it are fully utilized, while under-

bidders (outliers) would be automatically removed from the
estimation.
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The World Cup Betting Example

Orders Filled
Order Price Quantity | Filled | Argentina | Brazil Italy Germany | France
Limit Limit

1 0.75 10 5 1 1 1

2 0.35 5 5

3 0.40 10 5 1 1 1
4 0.95 10 0 1 1 1

5 0.75 5 5 1

State Prices

Argentina Brazil Italy Germany France

Price 0.20 0.35 0.20 0.25 0.00
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Online Retall Sell

« There is a fixed selling period or number of buyers; |,
and there is a fixed inventory of goods

« Customers come and require a bundle of goods and
make a bid

 Decision: To sell or not to sell to each individual
customer?

« Objective: Maximize the revenue.

Bid # $100 $30 Inventory
Decision x1 X2
Pants 1 0 100
Shoes 1 0 50
T-Shirts 0 1 500
Jackets 0 0 200
Hats 1 1 1000
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On-Line Retailer Linear Programming

Off-line Problem is an (0,1) linear
program that can be relaxed as LP

But now trader/Bidders come one by one

sequentially,

The retailer has to make the decision as
soon as an order arrives with the arrived
combinatorial order/bid (a, )

The retailer faces a dilemma:

— To sell or not to sell — this is the
decision

Optimal Policy or Online Algorithm?
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max
j=1
n
s.t. Z a;jx; <b; Vi=1,..., m
j=1
i ={0o0r 1} Vi=1,..,n
n
max Z T[jx]'
j=1
n
s.t. Z a;jxi<b; Vi=1,..., m

Off-Line LP Relaxation
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CSC of Off-Line Retaller Linear
Programming

 Let the optimal solution be x* and

the optimal shadow piece be y*

 Then from the CSC conditions: max Zn,-xj
. j=1
X =1if 1, >a'y* n
S.t. Z Clijx]' < bi vVi=1,..., m

* — " Ty *
F=01f5<a'y -

* — I I — a Ty*
Xi = fraction |f7zj—ajy

« If we know y*, the online decision Off-Line LP Relaxation

would be easy!

Yinyu Ye, Stanford, MS&E?211 Lecture Notes #8
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Online Algorithm and Price-Mechanism

* Learn “ideal” itemized optimal prices
« Use the prices to price each bid
« Accept if it is a over bid, and reject otherwise

Bid # $100 $30 Inventory | Price?
Decision x1 X2
Pants 1 0 100 45
Shoes 1 0 50 45
T-Shirts 0 1 500 10
Jackets 0 0 200 55
Hats 1 1 1000 15

Such ideal prices exist, and they are shadow/dual prices of the offline LP

Yinyu Ye, Stanford, MS&E?211 Lecture Notes #8
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How to Learn the Shadow Prices Sequentially?

e Sequential Linear Programming Mechanism (SLPM)
* Solving the LP based on immediately past several
periods’ data and use the resulted optimal shadow
prices to make decision for the next period orders; and
repeat when the current period is over.

* The shadow prices are updated periodically and

being used to make online decisions for the next
period.
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Wait for Data from 1 to €n

* Set x=0 for j=1,....en.
 Solve LP:

* Let p' be the optimal
shadow price vector
and use it to make
online decision for
orders from en+1 to
2€n.
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S.T.

Vi
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Now Use All Data from 1 to 2en

* Now solve LP: -

max 2 7T]X]

j=1
2en

S.t. Z ainj < 2€bi Vi
j=1

OSX,S]. Vj

* Let p? be the optimal shadow price vector and use it to
make online decision for orders from 2en+1 to 4en.
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Now Use All Data from 1 to 4&n

* Now solve LP:

max

S.t.

4en

IR

j=1
4en

Z ainj < 4‘€bi Vi
j=1

OSX,'<1 V]

e Let p3 be the optimal shadow price vector and use it to
make online decision for orders from 4en+1 to 8en.

Yinyu Ye, Stanford, MS&E?211 Lecture Notes #8
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Use Observed Data: Decisioning while Learning

/‘Resourceb -\
vy v y

—
en 2en 4€n 8€en 16en

Resources allocated at each update point is proportional to the number
of customers already arrived.

Theorem: Let the orders come randomly and let

min. { b, } = mlog(n)/e.
Then
the expected online revenue = (1 — € ) the offline revenue.

On the other hand, if min { b, } <log(m)/e.
then no mechanism/algorithm can achieve the (1 — ¢ )
guarantee.
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Adaptively Update Prices after every Batch of Orders
using the Remaining Average Inventory

* Now solve LP:

k
.t Z a;x; < (k/(n—k + 1))bk; Vi

1
0<x<1 Vj

* Here b*is the remaining inventory before the next batch of
orders arrive.
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Update Prices by the Gradient Method

1: Initialize py =0, by =Db

% hof K = 1, P

3: Decide the kth Order x;, = {

4. Update Shadow Prices:

Piir1

P11

stepsize oy

5. Update Remaining Inventory: by,1 = by — agxy
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Pk + Ok (akxk

1,
0,

Pki1 VO

1

1

/i

vk

-

otherwise

by

B— K -1

)
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