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Recall the Constrained Quadratic Example

min (x1 − 1)2 + (x2 − 1)2

x1 + x2  = 1 ( y )s.t.

L(x,y)=(x1 − 1)2+(x2 − 1)2-y(x1+x2 -1)

The key question is how to 
choose the penalty 
multiplier y such that the 
minimizer of the Lagrangian
is a minimizer of the original 
linear program.

The answer is y=-1 
How to intelligently find such
an accurate penalty weight?
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Penalty Principle: Dual Function from the Lagrangian

L(x,y)=(x1 − 1)2+(x2 − 1)2-y(x1+x2 -1)

For any given and fixed y, the minimization of the Lagrangian is 
a unconstrained minimization problem so that the gradient of 
the Lagrangian must be a zero vector

∂L(x,y)/∂x1 = 2x1 − 2 – y = 0

∂L(x,y)/∂x2 = 2x2 − 2 – y = 0

Thus we must have x1 = 1 + y/2  and x2 = 1 + y/2
Substitute x by the expression of y, the minimal Lagrangian

becomes a function of y:
-y2/2 – y

We call this minimal function of the multipliers 
Dual Function of the Lagrangian

Note that y=-1 is the maximizer of the dual function
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The Dual Function of (Convex) Minimization

• f (x): convex function, ci(x): concave function of x for “≥” and 

convex function of x for “≤” ; and affine function of x for “=“

• L(x,y): would be a convex function of x .

• Suppose for any given y (≤,free,≥) 0, define the dual function

min f(x) 

ci(x) (≤,=,≥) 0 , i= 1,…,ms.t.

L(x,y) :=f(x)- ∑i yi ci(x) , yi (≤,free, ≥)0

ɸ(y):=minx L(x,y) ( or infx L(x,y) )



Yinyu Ye,  Stanford, MS&E211 Lecture Notes #7 5

The Dual Problem of (Convex) Minimization

f*:=min f (x) 

ci(x) (≤,=,≥) 0 , Ɏ i
s.t.

L(x,y) :=f(x)- ∑i ci(x)yi

ɸ(y):=minx L(x,y) ɸ*:=max ɸ(y)

y (≤,free,≥) 0 , 
s.t.

Primal

Dual

Theorem

• ɸ(y) Is a concave function of y (≤,free,≥ 0) (ɸ(y) can be -∞)

• ɸ* ≤ f*
• ɸ* = f* if the primal is a convex optimization (under mild 

technical assumptions), and ∇ f*(RHS)=y* where y* is the 
maximizer of the dual – Zero-Order Optimality Condition.

One can interpret the Lagrangian as a “game-value” where the x-
player minimizes it for given y, and the y-player maximizes it for given 
x. The dual function is the anticipated function of the y decisions.
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A Nonlinearly Constrained Optimization Example

𝑥1
∗ = 𝑥2

∗ =
1

2
𝑓∗= 3 − 2 2

𝜑(𝑦) = 2 − 𝑦 −
2

1 + 𝑦
,

max 𝜑(𝑦), s.t. 𝑦 ≥ 0

𝜑∗ = 3 − 2 2

with y*= 2-1

Dual

When RHS is 
reduced by 0.1?
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General Rules to Construct the Dual

min f(x)

ci(x) (≥,=,≤) 0, i=1,…,m  (ODC)

Multiplier Sign Conditions (MSC)

yi (≥,”free”,≤) 0, i=1,…,m

Lagrange Derivative Conditions (LDC)

∂L(x,y)/∂xj = 0, for all j=1,…,n.

Complementarity Slackness Condition (CSC)

yi ci(x) = 0, for each inequality constraint i.

Primal

Constraints in
the Dual

If no x in the 
equation, set it as an 
equality constraint in 
the dual; otherwise, 
express x in terms of 
y and replace x in the 
Lagrange function, 
which becomes the 
Dual objective.

Not needed for construct Dual 
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min −x1 −2x2

s.t.         x1 +x3 = 1   

= 1x2 +x4

x1 +x2 +x5 = 1.5

x1, x2, x3, x4, x5 ≥ 0.

For this example, the Lagrangian would be

L(x,y,r)=−x1−2x2 -y1(x1+x3 -1)-y2(x2+x4 -1)- y3(x1+x2 + x5 -1.5) - ∑5
j=1 rjxj

where the entries of y are the Lagrange multipliers associated with 
three equality constraints Ax=b and the entries of r(≥0) are the 
multipliers associated with five inequality constraints  x ≥ 0. 

Reorganizing:

L(x,y,r)= (-1-y1-y3-r1)x1+(-2-y2-y3-r2)x2+(-y1-r3)x3+(-y2-r4)x4+(-y3-r5)x5

+ y1+y2+1.5y3

The Dual of the LP Example I
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The dual would be
max(y,r) y1 + y2 + 1.5y3

s.t. (-1-y1-y3-r1)=(-2-y2-y3-r2)=(-y1-r3)=(-y2-r4)=(-y3-r5)=0,
rj ≥ 0, j=1,…,5.

which can be simplified as
maxy y1 + y2 + 1.5y3

s.t. -1-y1-y3≥0, -2-y2-y3≥0, -y1≥0, -y2≥0, -y3≥0.

From the dual stand, if any coefficient of xj in the Lagrangian

L(x,y,r)= (-1-y1-y3-r1)x1+(-2-y2-y3-r2)x2+(-y1-r3)x3+(-y2-r4)x4+(-y3-r5)x5

+ y1+y2+1.5y3

is not zero, the primal or x-player can choose xj=∞ or -∞ to make the 
game-value down to -∞.
Anticipate the behavior of the primal player, the optimal policy of the 
dual must choose y and r such that all coefficients to be zero, and
the Dual objective function becomes:   y1+y2+1.5y3

The Dual of the LP Example II
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The Dual of LP Problem in Standard Equality Form

f*:=min cTx
Ax – b=0,  (y)
x ≥ 0.  (r≥0)

s.t.
L(x,y,r) =cTx - yT(Ax - b)-rTx

=(c–ATy-r)Tx + bTy

ɸ(y,r):=minx L(x,y,r) 

ɸ*:=max ɸ(y,r)

y free, r ≥ 0 , 
s.t.

ɸ*:=max bTy

c–ATy-r = 0, r ≥ 0
s.t.

Note that ɸ(y) is unbounded
from below whenever

c – ATy-r ≠ 0
so that the dual would always
enforce

c – ATy-r = 0

The dual can be reduced as
max bTy
s.t. c – ATy ≥ 0

which is in the standard 
inequality form.

Again r = c - AT y ∈ Rn called reduced 

cost vector or dual slacks vector.
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The Dual Function of (Concave) Maximization

• f (x): concave function, ci(x): convex function of x for “≤” and 

concave function for “≥”, and affine function for “=“.

• L(x,y): would be a concave function of x .

• Suppose for any given y (≤,free,≥) 0, define the dual function

max f (x) 

ci(x) (≥,=,≤) 0 , I = 1,…,ms.t.

L(x,y) :=f(x)- ∑i ci(x)yi , yi (≤,free, ≥)0

ɸ(y):=maxx L(x,y) ( or supx L(x,y) )
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The Dual Problem of (Concave) Maximization

f*:=max f (x) 

ci(x) (≥,=,≤) 0 , Ɏ i
s.t.

L(x,y) :=f(x)- ∑i ci(x)yi

ɸ(y):=maxx L(x,y) ɸ*:=min ɸ(y)

y (≤,free,≥) 0 , 
s.t.

Primal

Dual

Theorem

• ɸ(y) Is a convex function of y (≤,free,≥ 0) (ɸ(y) can be ∞)

• ɸ* ≥ f*
• ɸ* = f* if the primal is a concave maximization (under mild 

technical assumptions); and ∇ f*(RHS)=y* where y* is the 
minimizer of the dual.
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The Dual of a Nonlinear Maximization Example
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The Dual of LP Problem in Standard Inequality Form

f*:=max bTx

Ax – c ≤ 0 (y≥0)
s.t.

L(x,y) =bTx - yT(Ax - c)

=(b–ATy)Tx + cTy

ɸ(y):=maxx L(x,y) ɸ*:=min ɸ(y)

y ≥ 0 , 
s.t.

ɸ*:=min cTy

ATy-b = 0, y ≥ 0
s.t.

Note that ɸ(x) is unbounded
from above whenever

ATy - b ≠ 0

so that the dual would always
enforce

ATy - b = 0
and it is a LP in Standard 
Equality Form.
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Geometric Interpretation of Dual Variables

a4 

a5

a1

a2
a3

a2

a3

a4

Objective contour
b

At the optimal corner, c  
must a conic combination 

of a2 and a3 , the two 
normal direction vectors of 
the intersection constraints. 
Or it has an obtuse angle 
with any (extreme) feasible 
directions.

Recall conic comb means 
there are multipliers y2 ≥0
and y3 ≥0, such as

b= y2 a2+ y3 a3, 
where all other multipliers 
are zeros. 



Consider a Simplified MDP-RL Problem (Maze-Run)

max y0 + y1 + y2 + y3 + y4 + y5

s.t. y5  ≤ 0+ γy5

y4 ≤ 1+ γy5     

y3 ≤ 0+ γy4

y3 ≤ 0+ γy5    

y2 ≤ 0+ γy3

y2 ≤ 0+γ(0.5y4+0.5y5) 

y1 ≤ 0+ γy2

y1 ≤ 0+ γ(0.5y3+0.25y4+0.25y5) 

y0 ≤ 0+ γy1

y0 ≤ 0+ γ(0.5y2+0.25y3+0.125y4+0.125y5) 
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5

• yi: expected overall cost if stating 
from State i.

• State 4 is a trap
• State 5 is the destination
• Each other state has two options:

Go directly to the next state OR a
short-cut go to other states with  
uncertainties

y*0=y*1=y*2=y*3=y*5=0
y*4=1



Physical Interpretation of the Maze-Run Dual

max y0 + y1 + y2 + y3 + y4 + y5

s.t. y5  ≤ 0+ γy5 (x5)

y4 ≤ 1+ γy5     (x4)

y3 ≤ 0+ γy4 (x3r)

y3 ≤ 0+ γy5    (x3b)

y2 ≤ 0+ γy3 (x2r)

y2 ≤ 0+γ(0.5y4+0.5y5) (x2b)

y1 ≤ 0+ γy2 (x1r)

y1 ≤ 0+ γ(0.5y3+0.25y4+0.25y5) (x1b)

y0 ≤ 0+ γy1 (x0r)

y0 ≤ 0+ γ(0.5y2+0.25y3+0.125y4+0.125y5) (x0b)
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5

xj represents 
(discounted) how many 
expected times 
(frequency) actions j 
being taken in a policy.
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5

min cTx
Ax = e,  (y)
x ≥ 0.     

s.t.
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5Time 1

5Time 2
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5Time 3

5Time 4
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5Time 5
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The Primal and Dual Problem of Optimization
•Every optimization problem is associated with another 

optimization problem called dual (the original problem is called 
primal).

•Every variable of the dual is the Lagrange multiplier associated 

with a constraint in the primal.

•The dual is max (min) if the primal is min (max)

• If the primal is a convex optimization problem, then the dual is 

also a convex optimization problem. Moreover, the two optimal 

objective values are equal (under mild technical assumptions).

•The optimal solution of the dual is the optimal Lagrange 

multiplier or shadow price vector of the primal.

•The above statements are also true if the constraint are 

nonlinear.
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The Economic Interpretation of the Production Dual
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Primal

Acquisition Pricing:
• y: prices of the resources

• ATy≥c: the prices are competitive for each product

• min bT y: minimize the total liquidation cost

max cT x s.t. Ax ≤ b,  x ≥ 0 min bT y s.t. AT y ≥ c, y ≥ 0
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The Transportation Dual
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1 2 3 4 Supply

1 12 13 4 6 500   u1

2 6 4 10 11 700   u2

3 10 9 12 4 800   u3

Demand 400

v1

900

v2

200

v3

500

v4

20000
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The Transportation Example
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The Transportation Dual Interpretation
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Dual



Theorem 1  (Weak duality theorem) Let both primal 

feasible region Fp and dual feasible region Fd be non-

empty. Then,

cT x ≥ bT y for all x ∈ Fp, y ∈ Fd.

Proof:   cT x − bT y = cT x − (Ax)T y = xT (c − AT y) = xT r ≥ 0.

This theorem shows that a feasible solution to either 

problem yields a bound on the value of the other 

problem. We call cT x − bT y the duality gap.

If the duality gap is zero, then x and y are optimal for the 

primal and dual, respectively!   
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LP Duality Theorem

Is the reverse true?



Theorem 2  (Strong duality theorem) Let both primal 

feasible region Fp and dual feasible region Fd be non-empty. 

Then, x∗∈ Fp is optimal for (LP) and y∗ ∈ Fd is optimal for 

(LD) if and only if the duality gap cT x∗− bT y∗= 0 (no need 

for technical assumptions).

Corollary  If (LP) and (LD) both have feasible solutions then 

both problems have optimal solutions and the optimal 

objective values of the objective functions are equal.

If one of (LP) or (LD) has no feasible solution, then the other is 

either unbounded or has no feasible solution. If one of (LP) or 

(LD) is unbounded then the other has no feasible solution.
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LP Duality Theorem continued
Proved by the Simplex Method



Primal   
Dual

F-B F-UB IF

F-B 

F-UB 

IF
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Possible Combination of Primal and Dual
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Optimization



Consider the primal feasible system: {x : Ax = b, x ≥ 0}. If it is

infeasible, then the dual must be unbounded, that is, there exists 
a y in system

{y : AT y ≤ 0, bT y > 0}.

The reverse is also true. These two systems are an alternative pair: 
one and only one of the two is feasible.

Consider the dual feasible system: {y : AT y ≤ c}. If it is infeasible, 

then the primal must be unbounded, that is, there exists an x in 

system

{x : Ax = 0, x ≥ 0, cT x < 0}.

The reverse is also true. These two systems are also an alternative 

pair: one and only one of the two is feasible.
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Application of the Theorem: Alternative Systems



⎧
⎪
⎨

(x, y, r) ∈ (Rn , Rm, Rn ) :

⎪
⎩

+ +

cT x − bT y = 0

Ax = b

AT y + r = c

⎫

⎪⎬
,

⎪⎪

⎭

which is a system of linear inequalities and equations. Thus it 

is easy to verify whether or not a pair (x, y, r) is optimal by a 

computer.
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Recall the LP Optimality Condition

Check if a pair of primal x and dual y, with slack r,  is optimal: 

These conditions can be classified as 
• Primal Feasibility, 
• Dual Feasibility, and 
• Zero Duality Gap.  


